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1 Introduction

Among the many possible norm-based optimization methods, the concept of Hoo-optimal

control has gained enormous attention in the past few years. Attractivity of design methods

based on the H<-norm is due to the fact that this methodology takes, in a direct and

effective manner, unmodeied dynamics and other uncertain system paranleters into account.

Early LQ-based methods tried to account for these uncertainties by introducing, in addition

to the real process and sensor noises, fictitious noQises into the output and state equations of

the linear plant model. This assumption led to the LQG design methodology using Kalman

filters as the stochastic counterpart to the deterministic Luenberger observer. In most cases,

however, the assumption of random noises entering the system having a certain distribution
is not valid.

Here the H,_-framework, based on the Small Gain Theorem and the Youla- (Q-)

Parametrization, effectively treats system uncertainties in the control-law synthesis. The

H,_-norm of a system can be interpreted as the maxinmm "gain" of a. transfer function

in the frequency domain. Tile Sinall Gain Theorem then provides a pathway to define

robust stability of a. system to uncertain inputs in terms of the H>:,-norm of this system.

Under certain assunaptiolas, the H,_-bound control problem using full-state feedback and

the observer-based (full or reduced order) H_-0utput feedback problem have been mostly

solved. However, when such a solution exists, it is usually not unique. Namely, there exists

an infinite number of controllers satisfying the given Hoo-bound. The problem of actually

miniinizing the H_._.-norm of a system has proven to be undesirable in many cases as it results

in controllers with high gains or large control bandwidth.

A design approach involving a mi×ed H-a/H_. norm strives to combine tile advantages of

both methods. The problem is to

• Minimize the H2-norm of the closed-loop transfer function and thus minimize the RMS

values of the outputs for a system driven by white-noise inputs, and at the same time

• Keep the H_-norm of the closed-loop system below a certain bound, or minimize this

norm to gain robustness and account for Uncertain exogenous disturbances that have
a certain norin bound.

This advantage motivates research activities toward finding solutions to the mixed H,a/H_-

control problem. In general, a mixed H2/H.-,:.-conti'ol can be termed as "LQG with robust sta-

bility', a property that regular LQG cannot provide. The problem of mixed H2/H_-control

using state feedback or full and reduced order dynamic conqpensators has been addressed

intensively over the past two years. Current research in this field will be discussed with more

depth in Chapter 4.

As in LQ-based methods, the Hc,-control problem and the mixed H2/H_-control problem

with controllers of fixed structure and order remains a topic of current research. Some

theoretical results have been found and numerical implementation of the solution algorithm

remains diflqcult, mostly relying on approximations and numerical optimization methods.

The most frequently used method for low-order controller design consists of first performing

a plant order reduction which is then followed by a control-law synthesis using the reduced-

order plant model.



The approach developedin our researchis basedon a finite time cost functional that
depicts an H,×,-bound control problem in a Ha-optimization setting. The assumption of a

finite-time cost functional is very attractive as it allows the optimization process to start

with an initial controller guess that is not necessarily stabilizing. Another motivation for the

use of a finite time criterion in the mixed H.2/tI_- control problem as weli as the H_-control

problem is the fact that, in steady" state, existence of a controller is solely based on the

solvability of certain algebraic Riccati equations. If a solution cannot be found, the method

would break down with an u_zt)ourMed objective function. The time-domain approach - and

in particular using a finite-time horizon - offers more insights into the nature of the problem

and provides a uniquely different, non-Riccati based controller design method.

Finally, the nature of our research is toward a practical implementation of the H_-

control algorithms for arbitrary fixed controller structures. We feel strongly that practical

application has fallen short of all the existing theory in H_, and mixed H_/I-I_-control. It

is neccessa.ry to develop algorithms that address practical problems faced by control design

engineers and to provide design lools for this purpose in the fields mentioned above. Thus,

our attemps will follow a more application oriented line of research rather than a theoretical

one.

The goal is to define a time-domain cost function that optimizes the H2-norm of a system

with an H._-constraint function. \¥ith this cost functional and as tj. -+ _¢, a necessary and

sut:ficient condition for IIH][_ < _ can be established where 7 is a prespecified parameter.

Thus, for a finite t I the constraint provides 'information' for the H2-optimization to yield

the desired H,_-bound. It is desired to append a possible HE-constraint either as a side con-

st,'aint (in form of an inequality) or, to int:orporate the constraint directly into the function

o,: which the mixed [12/H._-cont.rol is based. The finite-time approach taken is advantageous

due to the fact that no stabilizing controller is required in this procedure. Furthermore, for

a finite terminal time, all considered functions in the cost functional and their sensitivity

to design pa.rameters are well behaved. The optimal controller will then be achieved in the

limit of t I ---+ ,_c. In most practical situations, the iterative procedure converges to. a nearly

steady-state solution when Q is relatively large compared to the slowest time constant of

the closed-loop modes. The resulting controller is then assun:ed to be an optimal solution

for the steady-state case. Of course, after a controller }:as been designed, the norm bound as

well as stability can be confirmed using the singular value and the eigenvalue analysis of the

corresponding closed-loop system. It. should be noted that when lj is small, this approach

does not guarantee stability (in contrast to methods based on the Youla parametrization) or

satisfy the norm bound (as in methods based on algebraic Riccati equations).

Organization of this research interim report is as follows. In Chapter :2 we go over the

basic norm definitions and cover some preliminaries. In Chapter 3 the H_-theory leading

to the mixed H2/H_-pioblem is reviewed. Chapter 4 covers the most recent advances

in mixed H2/H_(-theory. Chapter 5 investigates an important cost function in the time

domain. Chapter 6 addresses our approach to the mixed H2/H_-control problem with an

appended H_-bound constraint. The precise cost function for a mixed H a/H_-control is

defined. Chapter 7 discusses a possible algorithm for the numerical solution of the proposed

cost function and the controller design. Finally, the remaining research work is outlined in

Chapter 8.

It should be noted that review of the LQ-type /-/2-optimization theory falls short of



tile coverage presented here for H x,-theory as H2-methods have been widely known. The

signifcant part is the H_-bound characterization.

2 Norm Definitions and Preliminaries

Let. G := (,4, B, C, D) denote a linear time invariant system as follows.

c. I ,i.(t) = Ax(,) + Bw(t):(t) = Cx(t)+Dw(t) (1)

Unless otherwise stated, the initial condition x(O) of the system is assumed to be zero. Then

the transfer function G(.s) from w(.s) to z(s) is given by G(.s) = C(sI -A)-_B + D.

2.1 H2 and H_-Norms and their Properties

Before the actual norm definitions are stated, we define two important frequency-domain

spaces.

• The frequency-domain space H2 = H2(s,C m×'_) consists of all matrix functions

F(s) E C "_x'_ of a complex parameter s which are analytic in the open right-half

plane (that is Re(.s) > 0, Re(.) denotes the real part of the argument) and fulfill

sup,,R¢{_l>0 J_._ ' F'(s)F(s)ds < ,_. That is H2(s,C TM) contains all asymptotically

stable transfer functions G(s) that are strictly proper (D = 0 in (1)).

The Hardy space- a frequency-domain space - H.._ = H._(.s,C '_×n) consists of all

matrix functions F(s) ff C "_x'_ of a complex parameter s which are analytic in the open

right half plane (that is Re(s) > 0) and fulfill &[F(s)] < ._c VRe(s) > 0 where _(.)

denotes the maxinlal singular value. That is, H,×.(s, C mx'_) contains all asymptotically

stable transfer functions G(s).

L..,:,(L2) contains H_.(H2) and represent functions F(s) C C mx'_ that are bounded on

the jw-a.xis and proper (strictly proper), stability is not required for these spaces.

Besides these frequency-domain spaces the most important normed space in the time

domain is L2(_) where _ represents real numbers. L2(_) represents all square inte-

grable scalar functions of time 9(t) e ?R with []gl]_ = J-_,o[g(t)] 2dt < oc. For simplicity

in notation, we will use L.2 to stand for both, the frequency domain as well as the time

domain space. The exact domain will be cleat from the context where it is used.

• The prefix/_ denotes real-rational elements of the according frequency-domain spaces.

That is, RH2 and RH_ denote real rational elements of H2 and H_ respectively.

With the above definitions the following norms can be derived.
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2.2 H2-Norm of a System

Definition 2.1 Let the system G:=(A,B,C,O) be stable and strictly proper, then

IIclll _ ! Trace[G'(j.')G(j_,)]d_,
T( c'o

If_ '<_ ,22_- _ IlCll_d,,'

_ 1 f__ k{_,[G(jw)]}2&o
27i" "-_ i=1

(2)

where [].]IF denotes the Froebenius norm of a transfer function. Equivalent time-domain

definitions can be established using Parseval's theorem.. A very important intlerpre(afi0n of

the 2-norm of a system is given in terms of a measure of the output response of a system hav-

ing white noises as input disturbances. A characterization of the 2-norm in these stochastic

terms can be put as follows.

Definition 2.2 Let the sy.st(m G.'=(A,B,C.O) be asymptotically .stable and strictly proper.

Let w be a white-noi.__e disturbance input with unit spectral density .5'_.(j_') = [. Then

llC;ll_= lira k][zT(tf)z(t])] (3)

where g ,'epresents the e.rpectatwn operator.

A very convenient way to compute the 2-norm of a transfer function is via the observ-

ability grarnmian I1o or the controllability grammian I_V_ making use of the time-domain

definitions of the 2-norm. They are defined as follows.

Definition 2.3 Consider the system G.'=(,4,B,C,D) with .4 asymptotically stable, (A,B)

stabilizable and (A.(') observable, th_n

/71,1'; = eArtcgceAtdt (4)

/0_14,; = eAtBBr eArtdt (5)

Obviously these two matrices can also be computed via a Lyapunov solution. Now the

2-norm of a transfer function can be expressed in terms of Wo and I,V_.

Definition 2.4 Let the system G:={A,B,C,O) be asymptotically stable and strictly proper,

then

IlCtlg = Tr"c_[a:_V2-B] (6)
= >.a_.[CW_Cr] (7)



2.3 H_-Norm of a System and Some of its Properties

For transfer functions G(s) E H_, the H_-norrn is defined as follows.

Definition 2.5 Let the system G:=(A,B,C,D) be asymptotically .stable, then

Gll,x, = sup11'_ i[G'(.__)C;(s)] (S)
s,Re(s)>O

where G'(s) denotes the conjugate cornplex transpose of G(s) and i(.) denotes the maximum

eigenvalue of the argtunent. Unless otherwise stated, II.ll_ will denote the norm defined on

H× rather than L_.. As the Hard)' space defined above is a Banach space, the above

definition can alternatively be stated as,

Definition 2.6 Let the system G:=(A,B,C,D) be asymptotically stable, then

, 2IIGII,_-- sup X[G*(j_,)G(ja;)], (9)

that is, an actual computation has t_o be performed on the imaginary axis only. A computa-

tional algorithm to compute the H_×, norm - not=exactly but as close to the norm as desired

- is due to Boyd [2].

Definition 2.7 Let the system G:=(A,B,C,D) have no poles on the jo.,-axis and define the

Hamiltonian matrix,

M._ = ( ,4 + BR-aDTC 7BR -' BT )-_/C TS-1C -A T _ CTDR_IBT (10)

where R = (_ 2I - DT D ) and S= (_'2 I - D DT ).

Theorel-n 2.1 ([2]) Lt, t ..4 be asymptoticallq .stable a,_d _, > O(D), then, [IGII_>_"_¢==_ :_I_

has at least one eigenvalue on the imagb_ary azis.

This theorem provides a convenient way to compute the oc-norm of a system by iterating

on ?. Starting at a large value for ? > 5"(D) the eigenvalues of the associated matrix M_ are

computed. If 3L, has no purely complex eigenvalue, then the chosen _' is larger than ]IGII,,_
and we can lower % The iteration terminates _:hen the largest "_ is found for which M._ has

a purely complex eigenvalue. Note that in the case where A is not asymptotically stable but

has no j_-eigenvalue, the above theorem represents a characterizatioll of the L_-norm of

the same transfer function.

An equivalent theorem expresses the same condition in terms of certain algebraic Riccati

equations (ARE).

Lemma 2.1 ([47] [57]) Consider a .system G:=(A,B,C,D) with ,4 asymptotically .stable,

(.4,6) observable, (A,B) controllable and ? > _(D), then the following .statements are equiv-

alent:

,

IIGII_ < _ (at)
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3L, ha.s no eigenvalues on the imaginary axis (12)

g. The .4 RE

[A T + CTDR-tBT]X, + XIIA + BR-_DTC] + 7X_BR-IBTX_ + 7cT5'-_C = 0 (13)

has a unique real positive definite solution .¥1 = X rl such that ,4 + B R- I ( D T C +*t BT X1

is asymptotically stable.

4. The ARE

.

[A T + CT DR-_ BT]X2 + .¥2[,4 + BR-_ DTC] + I2-¥,2BR-1BT.\'.2 + CT S-_C = O (14)

has a unique real positive definite solution X2 = X_ such that ,4 + BR-I(DTC +

2B T X2) is a.s.qmptotically stable.

The .4 R E

[A + BR-'DTC]X3 + Xa[,4 T + C TDR-'B T] + "}2X3CrS-'C.k'3-I- BR-'B T = 0 (15)

has a unique real positive, definite solution X3 yT .such that ,4 + (BD T +

72xacT )s-_( ' is asymptotically .stable.

This theorem is an extension of lemma 2.3 in [47] and equation .5.43 in [57] for the proper

case rather than the strictly proper case. It can be easily derived using the identities

X, = "/-iX1, X3 = _t-a.¥( 1 and R -1D T = DrS -_. Note that the notion of existence of

a solution to the above ARE's means that the matrices ,¥_, ,k'2 and X3 are bounded; that

is, any matrix norm applied to them is finite.

A similar characterization of the H×.-norm was derived by Zhou, Khargonekar and Petersen

(see e. g. [21]) in terms of a Riccati inequality (also termed Quadratic Matrix Inequality or

QMI by Willems [53]). The QMI represents the fundamental tool for the H._-design method

developed by Zhou, Khargonekar and Petersen.

Lernma 2.2 ([21], Lemma 2.2) dbnsider a system G:=(A,B,C,D) with .4 asymptotically

stable and At> (*(D), (.4,B) stabitizable and (C,A) observable, then the following two state-

ments are equivalent:

l.

IlCll < "r (16)

. There exists a real positive definite symmetric matrix X4 such that

[,-IT + C'TDR -_ BT]x4 + .¥4[A + BR-_DTC] + X4BR-'BTX4 + cr(I+ DR-IDT)C < 0

(17)



Becausethis representation is the basisfor a very generalapproachto the H,_-norm bound

control problem [46], the proof is briefly outlined here.

The system considered is of the form G := (A, B, C, D) with ,4 asymptotically stable.

Assume that llGll_ < which implies that R and S as defined above are positive definite.

Now a unitary transformation [r is applied to the system.

where zx and u,,: are the new output and input, vectors (for a complete discussion of

this transformation, see [66]). It can be shown then that this transformation leads to a

strictly proper system Gx := (AN,BN,C._-,0). Since U is unitary it is easy to show that

tlall,_,< _ ** IIc;xll,_< _. Applying Lemma 5 from W{llems ([53]) the desired result fob

lows immediately using the fact that A is asymptotically stable and a result from Lyapunov

stability theory.

Note the term CT([ + DR-tDT)C can be written as cTr(l + DR-1DT)C = 32('r._g-lC so

that the above inequality can also be stated in the/b/lowing ibrm,

[,47- + ('TDR-IBT].\4 + .\'4[.4 + BR-iDTC] + .¥4BR-iBT-\4 + 2_2c.'Ts-'C < 0 (lS)

From these norm definitions and norm bound characterizations, it can be seen that the

whole concept of H,,:. is set in the frequency domain. However, there are possible time

domain characterizations of t.he H×-norm that are useful in many respects.

2.4 A Time-Domain Characterization of the N_-Norm

Definition 2.8 Considcr a system G:=(.4,B,C,D) with, A asym, ptoticalIy stable, z(O) = 0

and u,(t) E L_, then

IIHII_ = sup lira fo' zr(t)z(t) dt
_,,llwt[2=, 'z=;'° fo' wr(t)w(t) dt (19)

II-:ll_ (:zo)
S l_l p

This is a defi_ition of aH operator norm induced by. the 2-norm in the input and output

space, other restrictions on w(t) are possible (see e.g. [65]). Physically this norm can be

interpreted as the ratio of L,-norms of output vector and input vector (The restriction

Ilwll_= _ can always be achieved by scaling as long as w(t) • L2). Note that the function

w(t) = g, exp(j_oot) would achieve this norm for some _-'0 and t_. However, periodic signals

do not have a finite L2-norm and are therefore excluded flom the above definition. An

important observation concerning this time-domain definition - but with a finite horizon

time-has been made by Boyd [2],[31. Namely,

Theorem 2.2 Cotz.sider a ,system G:=(.4,B,C,D) with .4 asymptotically .stable, x(O) = 0 and

_,(t) ¢ O, w(t) c t_, the.nVtI > O,

fo e' zT(t)z(t)dt < [IH]]:, fotZwT(t)w(t)dt (21)
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Importance of the finite-time cost function (20) is not basedon the fact that it representsa
lower bound for the H_-norm, but in its relationship to a cost function to be defined later.

Finally, shown in this section are a few properties of the H_-norm that are important for

the further development and these are standard results of the operator-norm definition (see

e.g. [65]). Consider two transfer functions G.and H,

IIC,ll..-<.>_o, II.C,'ll.<.= o ifr c,=o
lloCtl,_= IolllClt...:
lid;+ HII__,_<IIClI.-<.+ tlHtlx
IICHtI,=<,___IIClt,_Ilttlt,.-<,

2.5 Signals with Bounded Power and Bounded spectrum

This section reviews some of the concepts important behind the approach of Doyle, Zhou and

Khargonekar to the mixed H2/H._-control. The signals considered are time-domain signals

that can be vectors in general. For this purpose, let us define the following functions.

Definition 2.9

defined as

The cross-correlation R,_,(r) betwee_t two time-domain signals u a,M v is

l[,&,_,(r) -- lira -- u(t + r)vr(r)dt (22)
b-=':' 2t S _s

_/"it exists and i_ finite Vr.

The Fourier ti'altsform of R,<.(r) is called the cross-power spectral density S,,_(jw) and is

defined as follows.

Definition 2.10 The cro.ss-pou'er .,pectral density ,9_,(ja,') between two time-domain .signals

u and t, i.s defined a.s'

"< )_ d_- (_3),5',,.(j_) = R,,,,(r -_<_
,.go

IRemarks:

1. The atttocorrelation as well as the power spectral density of a signal u(t) are defined

accordingly.

2. It can be shown that

T&,.(_) = R.o(-r) > o (24)

&,,(_) = R((__) (25)
= 5_=(jw) >__0 (26)S<,_(j_') -,T " ,

= _s,,,,(_) (27)S.v(j_-') -,r - ,

Now two sets of signals with bounded power and bounded spectrum are defined in the spirit

of Doyle, Zhou and Bodenheimer ([14], [15]).
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Considera set of vector-valuedfunctions u(t) that satisfy

BPt: u(t) is finite for all t,

BP2: R_(r) exists and is finite for all r

BPa: 5'_(jw) exists (not necessarily bounded)

Now the following two sets are defined.

Definition 2.11 ([14]) The set of vector valued fluzctions u(t) with bounded power will be

de ttoted b:q P,

p := {.(t)..(t)sati<fie,_ BP,, B& a,_d B&}
wit k the se m i-n o rm

1 /ti
Hull]" = t,lim-,×,_ ./-t, uz(t)u(t)dt

= r,.<,c_{R,,_(O)}

if
"2 "iT

(:?8)

&fined on the .set P.

Similarly the set of all signals with bounded spectrum is defined as follows.

Definition 2.12 ([14]) .....

will be denoted bg S,

$ := {_,(t). _,(t)c P. llS'_.ll_ < _}
with the semi-norm

]lulls = [lS',,,,(j_.,)l[._

defined on the .set $.

Tke .set of cector-t, alued functions u(t) E "P u'itk bounded spectrum

(29)

t_ ema rks:

[. Note that all L2-signals (in the time domain) have zero power, so do all time limited

signals.

'2. White noise is not a member of $ as its auto-correlation is infinite at r = 0. White

noise in $ is comparable to periodic functions in L2.

3. Let the prefix B denote the closed unit, !)_all, that is B'P denotes the set of signals u

with bounded power and semi power norm II.ll_ < l, accordingly for B$.

4. Note also that $ C 'P.
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2.6 Some Game Theoretical Results

In this section some important results from game theory are reviewed. They are important

for the interpretation of the proposed H2/H_-cost function and for the numerical algorithm

to compute the desired controller.

Consider a min-n_ax problem of the following form,

,] ( &o, '/'o ) infsupJ(¢,g,) (30)
¢ ¢,

where ¢o tel)resents the optimal minimizing strategy and g'o the optimal maximizing strategy

in this game. Without any assumptions on concavity or convexity, the following results can

be obtained,

sup i_f J(o, g') < inf sup J(¢, d') (31)

This is easily verified and is a standard result in game theory. Another important concept

in game theory is that of a 'saddle point strategy' which - in mathematical terms - can be

stated as follows.

Definition 2.13 A pair Oo and .¢'o is called a saddle poi_zt .,_t,'ategy of the inf-sup problem

inf_ sup¢, J(o, _!") 'f

•1(_50. ,j') <7 .J(O0. '!'0) <7 .](¢, d'0) V9 • @ and V,/, • @ (32)

If a saddle point exists, then the 'inf' and 'sup' operators can be interchanged and 'inf sup'

is equivalent to 'sup in["' l)ut the reverse is not necessarily true. However. in general such a

point does not always exist. Various necessary conditions have been established to guarantee

the existence of such a point, but most ot these conditions assume convexity of J(e, _/,) in

and concavity of .](¢), _7') in _i, as well as continuity and convex compactness of the spaces

@ and @. In many cases, however, these assumptions are very restrictive and cannot be

satisfied so that the existence of a saddle point, cannot be guaranteed.

In general if one obtains the solution of a rain-max problem via some method, it has to

be verified in each case individually whether or not these solutions fulfill the definition of a

saddle point as stated in definition 2.13. The importance of a saddle point strategy can be

appreciated t)5' looking at it as a true, simultaneous minimization and maximization while

min-max or max-nain always iml)lies a certain order and thus an advantage/disadvantage to

either the minimizer or the maxinaizex. Other important concepts such as 'e-optimality' or

"saddle point strategies in equilibrium' are not reviewed here. For a brief review see [33] and

[2q.

It is recognized that most min-max problems do not have optimal solutions that represent a

saddle point. In a paper by Sahnon ([4.5]), he has given an approach to the min-max problem

fi'om a different, point of view. His objective was to find a solution to the following problem.

Definition 2.14 ([45]) Let J(O,t_') be a scala,'-vahted function that is non-negative, con-

tinuous in (-' E _ and coJ_tinuous in ¢ E _ where _ and _ represent closed and bounded

domains. Let ¢" de,tote the .minimizing strategy of 4) and defir_e the following rain-max

p I'ob Ie m,

max J(p', 6') = rain max J(¢, g,) (33)
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for which he found an iterative algorithm that is guaranteed to converge to

min,_e_, max¢.¢_, ./(Ca, _') using a sequence of successive minimization and maximization steps

only' (under certain assumptions). His algorithm and some of its properties are stated here

without proof, a complete discussion can be found in [45].

Assumptions:

' " ' _ {J(_,v))} and a {j(_,¢,)} are continuous in ¢51. Contmmty requirements: d(o,_J'), a77,

and _;_. :::

2. For each 7/, E q) there is an optimal e°(_/') E q_ such that .j(_o(_;,), 7[,) = jo(_/,) where

or°(*/,) is the minimal value achievable by _. This means that the minimizer can generate

the optimal minimizing strategy for any g_:

:3. Let 9rado.](6, _/') = 0 and let the ¢), _/' satisfying this condition be denoted by' _ and_/5.

Then it is assumed that a(_, ¢r,) = jo(_5)"

Sahnon's algorithm:

° Initialization:

Choose an initial set _I_0 {C't0, "t'.. 20, "" }"

"2.

:3.

The 7zth-iteration:

Perform: min_4 {max,;e_,,_, .J(O _/')}.

Let .&'_ denote this minimizing st.rategy. ......

Define d_ = n-iax,,._,,_, .J(_/', ,[,).

Perform: max,.e, {.J( 6 '_, _/') }.

Let ¢,'_ denote this maximizing strategy.

Define or,_I = J(O '_, _/,n).

Define qJ,, = _I',__l tO {_:,'_}.

If IJ, I - J,7 l < e then stop
Otherwise repeat step "2.

Remarks:

1. Salmon has shown in [45] that

J"_ < min_e_ max_._,_ J(gL _/') < Ji '_I for all i = 1 '3

"2. If above assumptions are satisfied, then the sequences {jim} and {j/M} converge to

min0e + max,.e, _ J(&, _/,) in a finite number of iterations.

3. If there are no rain-max strategies in the interior of the correponding domains, then

the algorithm will converge to rain-max strategies on the boundary of these domains.

4. Pure continuity of .J(O, _/:")is sufficient to show that d[" is a monotonically increasing

function of i. This is based on the fact that we minimize the objective function over

an increasing set q_,.
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. This algorithm does not guarantee convergence to a saddle point. Instead, it converges

to a rain-max value as defined in the definition 2.14. Also, the resulting rain-max value

as well as the resulting min- and max-strategies depend on the choice of the initial set

@0 (if no global minimization and maximization algorithms are applied). If J(¢, g,)

is convex/concave in its parameters (p and g, respectively, then the solution will be

unique; if the rain-max problem does in addition have a saddle poipt solution then this

algorithm will converge towards this point as in this case min-max equals rnax-min. If

convexity/concavity is not given, this algorithm might converge to local saddle point

strategies (if saddle point strategies exist at all).

3 H: -Analysis and Synthesis

The whole concept of H×.-analysis is based on the 'Small Gain Theorem' and the represen-

tation of a system with its uncertainties in a special form called the Q-parametrization (or

Youla parametrization). The synthesis on the other side can be approached via factorization

methods in the frequency domain or a game theoretical approach. Before we illustrate this

concept, we will review how one can use H_-norm formulation to include system uncertain-

ties into the analysis and design.

3.1 Uncertainty Representation and the Small Gain Theorem

In terms of notation, this section will follow the notation of [63]. Let 5i and -ko denote

mdltiplicative system perturbations in the input and output respectively, and _, the additive

system uncertainties. The perturbed transfer functions can be represented as

G(s) = Go(s)[I + A,(s)] (34)

OF

or

6'(.s) = [r + (35)

(;(._) = Go(s) + A(_(s) (36)

where Go(S) represents the nominal systemand the disturbances A(.) ar e nor m bounded in

the H_-sense; that. is, ]1:%1.111,×,-< 7. Note that possible uncertainties contained in this repre-

sentation include parametric model uncertainties, non parametric plant uncertainties (such

as transfer function perturbations due to identification errors), or neglected nonlinearities to

name a few. Note also that the norm assumption implies that the disturbances are required

to be stable, e.g. AI. I C RH_. Now we can rewrite this system as follows,

= A(s)z(s) (as)

where A(s) contains ali the uncertainties and M(s) represents the undisturbed system model.

At this point, we do have to distinguish between "structured' and 'unstructured' uncertain-

ties, implying that the A(s) block has a, structure that is known (i.e. structured) or, that

!
=

=
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nothing but the norm bound is known and t.l!e=!_ejs no need to define its structure (i.e. un-

structured). The first kind of uncertainties leads to #-synthesis while the second type of

uncertainties leads to the H,_-framework. Let us assume that. []A(s)]]_ < 1 (this can always

be achieved by scaling).

Equations (:37) and (:38) represent a 'feedback' connection of M(s) and A(s) to which we

now can apply the Small Gain Theorem. For this purpose consider the following system

z(s) = ?v/(s)[w(s)+ ,-(s)] (39)

_L,(,s)= ',(,)=(s) (40)

where r(s) represents an auxiliary signal. Then

Thus, the following identity is true.

I1:(_)11._< t1_:I(_)1to=, i1,%_)Ii_

Now the Small Gain Theorem can be stated as follows.

Theorem 3.1 Consider the feedbact, _ system formed by M(s) and _X(s) with M(s) C H.,:

and _k(.s) C H._,. then t_,e ha_.,e the following statement,

•'il,X/(._)ll,_ll--X(_,)ll_< I _ rh_ clo._¢dloop.__,j_te,,,is .stable (of bounded gain)"

It should be noted that the Small Gain Theorem is valid for other transfer function norms as

well since the main result is that the system has 'bounded gain' in the closed-loop feedback

configuration. Note also that this theorem doe.s..flot give an 'if and only if' relation;hence it

may be conservative. This conservatism can in fact be removed using the/.z-framework.

3.2 The General Setup for H_-Analysis and Synthesis

The frequency dependence of signals and transfer functions is omitted throughout this section

for ease of notation. It has to be kept in mind, however, that all considered transfer functions

are rea.l,rational functions of s (except for matrices in the state-space realization). Consider

now a. plant description in the fi'equency domain as follows.

Remarks:

• The input vector w contains the exogenous inputs which include signals such as dis-

laurbance inputs or noises acting on the plant from 'outside', fictitious noise inputs

to achieve certain design specifications, actuator or sensor noises as well as command

inputs ....
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• The input vector u is the control input and represents all inputs that can be used to

control the plant.

The output vector z contains all variables that are to be regulated. That is, it contains

outputs that are fed back through a A-block to the input w. In general one would like

to keep these signals as 'small' as possible. A sample of the elements of z consists of

variables such as errors between a real output and its commanded value, system states,

components of the measurement output y or specific control inputs u, as well as other

linear combination of these signals. Weighting factor can be frequency dependent or

pure scaling. Other fictitious A-blocks between outputs zi and w can be formulated

to incorporate robust performance. (Note: Some weighting functions or additional

A-blocks for robust performance may already be imbedded into the above model).

• The output vector y contains all variables that are measurable and thus accessible to

the controller {i.e. sensor outputs).

It is very important to clearly identify the signals used in the optimization model for the

H._-framework. Let us now assume that a state-space representation of the above system E

is given as follows.

{ ,iJ(_) = AIF(i_) -'1- BlW(t) -1- B2u(t)
" z(t) = Clx(t)+ Dllw(t) + D12u(t)

y(t) = Ca,r(t) + D2,w(t) + D22u(t)

so that a state-space representation of each component P,i is given by

(42)

PI.2 := (A, B 2, CI, D12)

P " P21 := (A, B1, C2, D21)

P_2 := (A, B2, C2, D_2)

(43)

The general objective in the H.._.-methodology is to find a stabilizing controller /((s) with

u(s) = I((s)y(.,.) that minimizes the H_-norm of the transfer function _,,,(s) from w(s) to

z(s) (or to keep this norm below a certain prespecified value for robust stability in the face

of the uncertainties A).

Note that in general the open-loop system P(s) may be stable or unstable. In the case

of an open-loop system, the first step is t,o find all the controllers that will stabilize the

closed-loop system and then look for one that satisfies the H._-bound constraint.

It is easily verified that the closed-loop t,'ansfer function T-,_,(s) with the controller K(s)

in place can be written as

_,,(s) = Y'(P, K) = P_, + P12(I - P_2I()-_&, (44)

3.3 Q-parametrization and All Stabilizing Controllers

A complete treatmellt of this problem would require extensive use of factorization methods

whose details are omitted here for brievety. Only the major steps that lead to the Youla (Q-)

parametrization will be outlined. Before we do that, the notion of stabilizability of f'(P, K)

has to be defined.
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Definition 3.1 .7.(p, K) is .stabili:able if thc re is a K for which .7"( P, K) is internall 9 .stabh.

If such a h" exists we will .say that K .stabilizes P.

For a discussion of internal stability in the sense of Desoer and Chen (see e.g. Francis [62],

[63] or [57]). Note that st.abilizability of P d0.e.s not necessarily means that P_ has to lye

stable, however, if Pit contains unstable modes then these modes have to lye observable

through y and controllable through u (i.e. the controller has to be able to stabilize these

unstalyle modes). This implies that (C2, A) needs to be observable and (.4,/3_) needs to be

controllable. These are taken as standard assumptions in the H_-litera.t.ure.

The following theorem shows that it suffices to concentrate on P22 only', rather than on

the whole P.

Lemma 3.1 ([62]) Let P2a := (.4, B_, C2, D.a2) with (.4, B2) controllable and (.4, C.2) observ-

able, and furthermore h and P22 are proper transfer functiolzs. Then K stabilizes P iff K

stabilizes P22.

Before we proceed, let's stat.b_ SOllle/'esults obtained from factoriza.tion, namely right and left

coprime factorizationsand doubly COl)rime factorizations.

Definition 3.2 ([63]) C'o,_.si&, two t,'a,_.@r function matrices F, G C RH._ where F and

G have the .same number of columns, th_.n F and G are right-coprime, over RH,_ iff there

exist X, _" E RH,-<. such lhat
XF + _-"6' = I, (4.5)

equivalently, for the left coprime factorization,

Definition 3.3 ([62]) Consider tu,o tmn.@r function matrices F,G C FfH.< where F and

G hare the same 17umber of row.s, the77 F and G are tefl-coprirne over RH._ iff there exist

X, Y E RH._ such. that
FX + GY = i (46)

These two identities are also called the Bezout or Diophantine equations. Note that state

space realizations of coprime factors are readily available but are not included here, see [62],

[63]. Finally' we define the doubly coprime factorization.

Lemma 3.2 ([62]) Fo," each proper ,'eat-,'atioua! mat,'ix G there exist M, M N, _', X, f(,

} and }s" (all of these matrices in RH,_) such that:

G = NM-' = :_7I-' ++- (47)

a tt d
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With these factorizations defined, their implications can now be addressed. Let G be a

proper real rational transfer function, then there are factorizations G = NM -_ and G =

:(i-1 _, where N and M are right coprime (in FIH,o) and :'_ and :1-4"are left coprime (in

RH_). A doubly coprime factorization finally irnplies right coprimeness of N and M and

left. coprimeness of 3? and .Q. Let right and left coprime fetctorizations be abbreviated by

rcf and lcf respectively.

Tile following theorem establishes the connection between the described factorizations

with the original H,,:.-problem.

Theorem 3.2 ([62]) Let No be a stabilizing controller and define

Pa2 = NM -1 = i17I-1._9 (49)

where M, :Q, N, .{_, ['u, (o. i"o and _7o ,'epresent lcf and rcf of P22 and h'o then tke following

statements are equicatent."

t. h" stabitize.s P

(M /'o) -'2. :'V io E RH_,

_-"o -(o )-'3. -;_ M E RH.,:

Furthermore, the set oJ" all proper .slabiliHn# controllers h" is 9iveT_ by:

[, = [(o + _:7'Q(] + Vo-';VQ)-'t'a -' (.51)

= (t:o + MO)(_,o + NQ)-' (52)

with, Q E RH_ .snch that (I + l,'o-tNQ)(_) is invertible ((.)(oc) de,2ote.s the high-frequency

gain. i.e. value of the tra,sfer function as s -+ _).

It. is easy to show now that the closed-loop transfer function can be represented as

_-(P, i_) = Pll + P12([ " PnK)-lP21

= I(T, Q)

= Tll + TlaQT2I (53)

This is the key result of Youla (Q-) parametrization. Now the original problem is to find a

Q such that

[{T_ + Tv2QT2, [[_, < 7, Q E RH,>_ (54)

Renlarks:

Note that Q is - in general - a transfer function that is restricted to be in RH_. That

is, it is required to be proper and asymptotically stable. Note also that .T'(T, Q) is

at:fine in Q.
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"2.

4.

5.

.

.

S°

.

(I + 1,0-1.VQ)(_c) invertible is equivalent to having (I + D.22(_(o0)) invertible. This

condition is termed 'well posedness' (see e.g. [61]). It reflects the necessity' that for

non strictly, proper controllers the problem is well posed 'v's.

The factorization results used in this presentation are useful a.s they nicely reflect an

'if and only if' condition for the stabilizability of the system. That is, stability of

(I - P.a.aK) -I can be expressed in terms of the stability of the matrix

-P22 I

which in turn can be expressed in terms of the above factorizations (for a nice derivation

of this connection, see section 6.4.2 of [63]).

A similar theorem ca.n be established using coprime factorizations of Pa2 and K0.

If ?(T,Q) is minimized over Q then this problem is equivalent to the model matching

problem (match TI2QT21 as close to the model Tll as possible).

Under various assumptions on T,a t,his problem represents the so called 1-block, 2-block

or 4-block problem.

bnder certain assumptions on r,j the problem can be tra.nsformed into the Hankel

Approxinmtion Problem (also called Nehari Extension Problem).

As Q is restricted to be stable and proper, this represents an infinite dimensional opti-

mization l)roblem. Boyd ([1]) used the above parametrization in Q with a prespecified

order (large!) to approximate this problem.

For a nice introduction into H._ see [22], [63] or [57] and for a thorough mathematical

treatment of this problem, see e.g. [61].

3.4 State-Space Formulae for the H_-Bound Problem

Instead of dwelling into the mathematics involved in the solution of the most general case (i.e.

the-l-block problem), we will summarize key' results that give precise state-space formulae for

which the H.,_-bound problem can be solved. One of the important results is that all strictly

proper stabilizing controllers have the state-space realization of an observer. This fact can

be shown using state-space realization of the coprime factors defined above and asselnbling a

complete rea.liza.tion of the controller K(s). This structural knowledge has been exploited by

Doyle, Olover, Khargonekar, Francis yielding the well-known DGKF-method (see [13],[63]).

At this point two different approaches have been considered; one relies on two algebraic

Riccati equations and a coupling condition (as pursued by Doyle, Glover, Khargonekar.,

Francis) which form the basis for most solution Of the H_-bound problem. A summary

of this approach can be found in the 1988 paper of Glover and Doyle [16]. The proof to

this approach relies heavily on factorization metlkods, but it also has a nice interpretation in

terms of the Youla parametrization and game theoretical results. The other approach taken

by Khargonekar and Zhou [21] as well as Sampei and Nakamichi [46] is based on two Riccati

inequa.lities.
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3.4.1 Tile DGKF Results

Let us first consider the standard assumptions and state the problem formulation of the

DGKF paper [la]. The system under consideration has the state-space realization given for

the systenl E (see (42)) with w(t) 6 R m' , u(t) 6 R ma, z(t) 6 R v' , y(t) 6 R v_, x(t) 6 R _.

With the following additional assumptions (often termed the standard H._-assumptions):

• A1. (A, Bay controllable and (Ca,.4) stabilJzable

2

• A2. rank(D12) = ma, rank(Dal = P2

• A3. Dra= ( 0 )I '

Dll ----- Dll21 D1122

where Dim has m_ rows and p2 coltirn_ils

=

• A4. D2a = 0

: n + m, a V_' E "R.

• A6. rank(.4-j_,'I B_ )C_ D21 = n + P2

Remarks:

VwET4

• Assumption A1 is required to stabilize a possibly, unstable plant P: equivalently, this

is necessary for lho existence of a stabilizing controller.

• Assumption A0 is a sumcient condition for the existence of a proper controller.

• Assumption A3 can ahvays be achieved by a preliminary scaling and a unitary trans-

[brmation as long as A2 is satisfied.

Assumption A4 D2_ # 0 can be reinc0rporated into the controller after that controller

is designed for Dn = 0. An alternative route to this 'reincorporation' is given by

vet another preliminary unitary transformation as suggested by." Stoorvogel [66] that

results in a system with D.n = O.

L

i
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• Assumptions ,%5 and A6 require that the transfer functions from u, t,o 2 and from w to y

have no invariant zeros on the j_2-axis. One interpretation of these conditions can be

traced ba_ck t,o the ___ula parametrization (see e.g. [17]): :f_t (y_ respectively) is right

(left respectively) invertible in RL_ iff A5 (A6 respectively) is satisfied. This means

thai this approach can be converted into a Nehari extension problem. Another (state-

space) interpretation for these requirements is given by the fact that the two ARE's to

be defined have a solution if the associat.ed Hamiltonian has no j,,,-eigenvahms which

in turn is given only if A5 and A6 are satisfied.

With the above assumptions, the existence theorem can be clearly stated.

Let's define

D,.=(D_, D,2), O._= /)2t

( ) 0)R= DT.D,.- _,_L,, 0 _ = D._D_
0 0 ' 0 0

Finally let P(.) denote the spectral radius (maximum eigenvalue) of its argument, then

Theorem 3.3 ([13], [16], [63]) d'o,zsi&, a s>stem E a.s defi,_ed abo_.,e _,ith the assump-

tions ..tl - .46 s(lti.s[hd, the_ ther_ _.rist.s an internal sfabilizin9 coMroller [((s) such that

II.*(P,z,)ll._,< _ <r,,,,_zo,,Zu,:r ....

2. there is a real .solution .X',×, = .\'f.:_ > 0 to the ARE

.\-._.(,_- BR-' DT.C',)+ (A - B[{-' DT.G,)rx,_
-X,..: BR-' BT X,×, + Cr( [ - D_.R-' DT_.)('_ = 0 (55)

,7. the,,, is a re(J sol,lio,_ }_ = }":f > 0 to the ARE

__(A - B, DrI_-'C') r + (A - &D._,R-'C')} :._.
.- ,v 1 ,.- r k-tO.l)Brl =0--_,..f [{- d},_ + B_(I - D._ (56)

q.

A state-space realization for the controller is given in the references cited with this t,heorena.

Let us turn to some intetpretations:

1. The ARE (55) is fiequently called the Generalized Control Algebraic Riccati Equation

(GCARE) as X..:. is necessary for the existence of a state feedback controller and thus

the existence of the feedback gain matrix fi'om the controller to the plant. The ARE

(56) on the other hand is frequently called the Generalized Filter Algebraic Riccati

Equation ((',FARE) as _ ...o is necessary for the existence of an observer-based controller

in the case of output feedback which then involves an estimation (Luenberger observer)

to reconstruct the states that are not directly available from y. Condition 4 finally

reflects the H._-bound (see [17]).
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"2.

;3.

If A3 is not satisfied, this schemebreaksdown; this problem is called tile singular H,,_

problem which has been tackled by $toorvogel in his dissertation ([66]).

The derived controller is not unique despite the fact that ,¥,,_ and }'7_ are unique.

The 'standard' realization of the controller given in literature is one of many if such a

controller exists. If, however, one of the above conditions is violated then there is no

stabilizing controller that achieves the H,_-bound. This is the most significant result

of this fornmlation.

4. Also, if a controller is designed using this method for a prespecified *l, nothing can be

said about what the actual H._,-norm of the closed loop system is, only' that the bound

is satisfied.

5. The proof relies hea\ily on frequency domain factorization ideas, a complete proof can

be found in [17].

6. The design procedure depends on whether only a H_-bound solution is desired or if

the H.<.-norm of the closed loop system is actually to be minimized. In the ill'st case,

only the staled conditions have to checked for a given *r- In the latter case we have to

iterate on ";, with decreasing values of _, until one of the above conditions is violated.

7. The controller order is that of the plant so that possible frequency weighting will

increase the order of the controller (i.e. plant order plus the sum of the order of all the

frequency weights!).

3.4.2 The Zhou and Khargonekar Results

As mentioned earlier, the attthors examined the H,:c-bound problem using the Quadra:tic

.Matrix Inequality (17). Their approach is appealing since it does not impose as many re-

strictions as the DGI(F algorithm. Also, the proof uses mostly algebraic methods and is

easier to follow, l-|owever, the design procedure involves another tuning parameter in addi-

tion to "_. The presentation here mainly follows the paper by Sampai, Mira and Nakamichi

[46]. Their results in [46] are an extension of the results in [21] where the state feedback case

is treated. Let us look at the assumptions made in this approach.

The system under consideration is the state-space realization of the system El (see (42)) with

w(t_) E FITM , u(t) E R ''_, z(*) C R p_, 9(_) C R p2, z(t) C R '_ and the additional assumptions:

A1 (,4, B2) controllable and (C'2, ,4) observable

A2 D22 = 0

These are the only restrictions on the system model. A1 has already been justified and A2 has

already been identified as not being restrictive at all. Clearly this approach can accommodate

a far wider class of problems _'here only observability and controllability of the above stated

matrices have to be satisfied; these are standard assumption in any traditional LQ-design.

The approach is split into two categories: development of necessary and sufficient conditions
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for the strictly proper controller caseand its extensionto the proper case.
Someresults are summarizedbelow. For the slate feedbackcaseKhargonekar and Zhou
[21] showedwhen (_-7.2 = I, D21 = 0 and D22 = 0 - the state-feedback configuration - the

optimal state feedback gain matrix F can be characterized in terms of a certain ARE (eqn.

3.3 in [21]). Theorem :3.5 in this reference finally presents a state-space realization of the

state-feedback gain matrix F that achieves the desired H._-bound. With the above results,

the main theorem of [-16] can be stated as foll0Ws I where Go denotes the dosed-loop system

transfer function matrix 1)etween w and =.

Theorem 3.4 ([46], Theorem 1, Corollary 1) Denote/') = (72-DT_D1,)and _.'_'= (.[2_

DII DT ). There is a strictly proper controller whi-ch stabilizes the system under consideration

and satisfies ]l(-;cl]._ < ,, if and only g the following conditions are satisfied:

;._>0

There e.risls a P = pr > 0 a,_d (_ Q = Qr > o satisfvin 9 the following conditions:

a) There e.rL_l., a _7_oh'i.r F ._e_gh Jka! .

P[.,_+ ,9:r + B,_-' D,_,(C,+ D,:Si] + [A+ BaF + B,,_-' >_,(C',+ >,,F)I_P
+PB,[i'-tB_P +(C, + Dt.2F)T([ + D1,/_-t DT)(c, + Dr2F) r <0 (57)

b) There: e.rists o malri:r K such thai

Q[A + EC-'e+ Cr,5'-_ D,_(BL + KD2,) r] + [A + KC2 + Cr_,_-_D,_(B_ + ED2,)r]rO

+(/3', + EO.al)([ + O_ _,'-_ DltJ(B1 + [i'D21) T < 0 (58)

c) a((::pP)< :2

If such matrices e.ri.st, th{n a param{tri:ation of a strictly proper controller is given bg

£-(t) = ,4((t)+ f_._(_)

_,(_) = d((t)

where the matrices ft, [_ and C" are' defined b_ equations (8)-(12) in Co,'olta,'y 1 of [46].

The extension to the proper case is performed by finding a matrix D, the high frequency

gain of the proper controller, that maintains tee H_-bound property of the strictly proper

controller designed for the system. Theorem 2 and Algorithm 1 in [46] give necessary and

sufficient conditions for the existence of such a proper controller as well as a parametrization

and a computational "guideline' for the actual computation of the controller. The matrices

F and K in above theorem can be computed using Zhou and Khargonekar's procedure in

[21]. This computation involves the additional tuning parameter mentioned above.
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4 Current Approaches in Mixed H2/H_-Control

As mentioned in the introduction, the H,..c-framework only provides robust stability. Ro-

bust performance can 1)e incorporated by introducing a 'fictitious' performance A-blocks

or frequency weighting. System inputs and outputs that are associated with system uncer-

tainties and other noises entering the system cannot be modeled independently in a pure

H=,:-franaework. If mixed strategies are desired, i.e. a H2-criterion for some criterion outputs

z2 with respect to some disturbance inputs tt,2 and at the same time a H_-criterion for some

z,_with respect to some w._, then we arrive at the problem of mixed H_/H,_-control. The

structural setup for this problena has to be extended to include the new inputs and outputs.

The most general description of this problem can be put in the following form:

,i,(t) = 7tx(t) + &_,,,a(t)+ b_w_(t) + &,,(t)
=2(t) .= _,x(t) + b,,u,2(t) + b,2_,,._o(t)+ b,:_.(t) (59)

E=/_ • :,.:.(_') = ('._.(t) + b_,w_(t) + b22..,...:,(t)+ b_3_,(t)

g(t) = (-'>r(t) +/3a, w2(t) + Da2w,.-.:,(t) + Da3.(t)

Note, that this systeln description is very general, it can include external disturbances enter-

ing the system (modeled by w-z), dislurbances due to system uncertainties (modeled by w._),

an output vector :.,: representing the output for the feedback closure via the uncertainty

system __X(,_)and an output vector :_ representing a set of signals to which the H2-objective

is applied. It is obvious that this kind of system assumptions allows a more realistic system

model than that assumed for pure H_ problems. A feedback controller K(s) is given by

_t(s) = K(s)y(._). Design objectives are then expressed in terms of a H.-c-criterion from

w..,:, to z__ for robust stability and an H2-objective for the transfer function from wa to z_.

These design objectives, however_ do not take into account cross-couplings from w2 to z._

and from w.:,:, to z_. Due to these cross-couplings a general mixed H2/H<.-strategy has yet

to be defined.

At this point, different design approa.ches have to be considered separa, tely. They vary in

basic system assumptions and theoretical strategy. However, connections have been made

recently and they are stated below. In particular, two important subproblems have been

investigated recently, namely the two 'disturbance input/one criterion output' case and the

"one disturbance input/two criterion output' case.

In the following subsections, we adopt the notation of the according reference for ease of

comparison. Thus, matrices in these subsections might have a different meaning than those

defined in other sections. Fu,'thermore the explicit time dependency of signals is suppressed

in most formula. If variables are considered in the frequency-domain, they will be shown

explicitly.

4.1 The Bernstein and Haddad Approach

Researchers Bernstein and Haddad addressed one of the subproblems stated above ([4], [5],

[9]). Note that an early paper [4] addressed a slightly different problem than the later papers,
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i.e. the direct feedthrough matrix E,_. fi'om w t.o =,_. was assumed to be zero in [4]. The

idea however is the same as in their later papers, which are only an extension to the case

of a proper transfer function between w and z,_(with more complicated Riccati equations).

To facilitate this presentation, let us consider the case of a strictly proper transfer function

between w and z,×. as assumed in [4]. The system under consideration is

_BH . {
2/,_

with a strictly proper controller C(s)

"

along with the following assunaptions

2 = Ax+Dlw+Bu

z2 = Etx + E2u (60)
z,-_ = El_x + E2,x,U

9 = Cir+D2u,

of the same order as the plant and it is defined as

{ 2_ = ,4_x_+Bw (61)It _- C c .T c

and notation,

1 (,4, B) and (.4, DI) are controllable:

(C, A) and (El×, A) are obserxable;

E(e : 0; = R,; z;e = >_o;

.5 D,D_ = 0; D, DT = V_; D2D T = V2 > 0;

This approach is very appealing as it. deals with one disturbance input vector w plays a dual

role depending on which output vector and, thus, which (tesign objective is considered.

Let the closed-loop system - with the controller in place - be written in the following form,

" /-i2 +/)w (62)

=2 = /)b (63)

z=,: = E_.2 (64)

where ,i" contains the plant and controller states, the above state model matrices can easily

be computed from (60) and (61). Let. furthermore the closed-loop transfer function from w

to z_ be denoted by H(.s),

H(s) = bL,.o(sI - ,4)-'D (65)

then the design objectives can be stated as follows,

i) Find a strictly proper controller such that the closed-loop system frorn w to z_ is

asymptotically stable, and ....
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ii) the closed-loop transfer function between w and zo_ satisfies

(66)

where "y is a prespecified constant, and

iii) the controller minimizes the cost function

lim E[s krk.fl

lira $[._T/_k]
t_O,O

(67)

Remarks:

• For the design objective ii) the disturbance is assumed to be w E L2.

• In iii) it is assumed that w is white gaussian noise with unit spectral density.

• In iii) E denotes the expectation operator.

The solution approach relies on the ['ormulation of an auxiliary problem for the H2-problem

that 'automatically' enforces the H_-constraint in (66). To do that let us examine the cost

function .](A_, B_,, C',.) in more details. It represents simply a weighted steady-state state

covariance responses of l,he closed-loop system to the disturbances w being white noises and

having a unit power spectral density matrix. [t follows from a standard result that

J(A_,B_,C_) =

where Q is the positive definite solution of the Lyapunov equation

(68)

,i<_ + Q,4 T + f_ = 0

where ,4 is asymptotically stable. Now we define the following Riccati equation

(69)

,4Q + eA r + OR. c.,2+ = o (70)

It can be verified that, if a solution 0 for t_3e ARE in (70) exists - assuming the associate<]

,4 is asymptotically stable and the above controllability assumption -, then this implies

l[/-/(s)l[_, < -_ and c_2.-Q _> 0 (Lemma 2.1 in [4]). These results motivate the definition of a

new cost function that incorporates the H_-bound into the Ha-optimization. This new cost

function defined by Bernstein and Haddad is defined in terms of Q instead of (_. Namely,

J(A,:, B_:,C,:, Q) = Trace { QR. } (71)

It can be easily verified _[_a_

J(,4_, B_, C_, Q) > J(A_, B¢, C¢) (72)

From Q - Q k 0 it is obvious that the new cost function represents an upper limit for

the 2-norm of the dosed-loop system so that the whole setup considered by Bernstein and
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Haddad is suboptimal with respect,t.o the 2-norm minimization as well as in the H._-sense

(since only a bound for the norm IIH(,__)II_is considered).

The new auxiliary problem can now be described as "Minimize the new cost function

,)r(A_, B,. C_, Q)subject to (70)".

The further de\:elopment is based on forming the Lagrangian function for the auxiliary

optinaization problem by appending the ARE (70) to the cost function J(.4,:,B_,C,:, Q).

This yields

12(,4_.Bc, C_._.,td)=T,.aee{QR+tA_+Q]I+72QR.._+_"]fld} (73)

Derivation of this Lagrangian with respect to _, Ao,Bo, C_ and ,.t4 yields the final result.

The lemma stated below is taken from [86] and its implications will be discussed later.

Lemma 4.1 ([56], Lernnaa 1) Let:s consider a plant given by (61) and the according as-

surnptions .stated above. Let _,. be a pre.specified positive constant. Furthermore, let C(s) be

a .,:trictly proper .stabilizing controller o.lthe same order as the plant that minimizes the cost

.f,,,c,io_ j(._, Bc, (;. _) .s,,bj_,, to IIH(._)II_< "_. Then .such a controller exists if and only
(f there e.ri.__t real .s:yn,,,_et,'ic mat,ices Q >_ o. P >_ o a,zd 0 > 0 satisJ}yi,,g:

0 = .4<2+ cZar + c2[:,-2&.._- c'r__-'C]C2

0 = [.4 + "?-2(Q-(2)RI._.ITP + P[A + 7-2(Q - Q)R_._.] + ETE:_-CfR2C_

o = [.a+ -_-"O.R,_ + SCJO.+ ©[A + _-_0,,_,,_ + BC,]_
+7-2(_[Rtx + C'r R_._C_IQ + QcTt'_-'CQ

.% = .4 - B_(' + BC'_ + 1-2QR_,_

B_ = QCrI_ -l

0 = R2C_ + BrP + _,-2R,._,C_OP

74)

7.5)

(76)

(77)

(7s)

(79)

(so)

Remarks:

,

"2.

Note that in the original paper of Bernstein and Haddad ([4]) these conditions were

labeled "necessary'. In a very recent paper by Yeh, Banda and Chang ([56]), it has

been shown that these conditions are also sufficient (see Corollary 1.1 and Theorem 2

in [56]). This justifies the if and only if' relation in above lemma.

The above theory has also been extended to the low-order strictly proper controller

case which adds yet another Lyapunov-type function to the above conditions. This

additional function is also coupled with the other equations (see Theorem 6.1 in [4]).

:3. Presently only numerical methods are available to solve the system of equations of

Lemma 4.1 (see e.g. [10] or [ll]) - under the assumption that such a solution exists.
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4.2 The Doyle, Zhou and Bodenheimer Approach

Researchers Doyle, Zhou and Bodenheimer have considered the dual problem to that of

Bernstein and Haddad ([14], [1.5]). The problem is dual with respect to the system assump-

tions as well as the necessary, and sufl3.cient conditions derived for their problem. The system

under consideration is

_DZB / ,i" = Ax + BoWo+ BIWl + B2a
2/.<. " z = Ctx + D12u (81)

( y = C2x + D20w0+ D21tvt

with a strictly proper full-order controller K(s)

• f ,i:_ = ,4kx_-Ly
K(s) _ = F_ox_ (82)

Analysis of a System with Two Disturbance Inputs

In this presentation, only an outline of the approach and some of the important con-

clusions are described. Necessary and sufficient conditions can be derived using Bernstein

and Haddad's results. Let Go denote the transfer function from wo to z and G1 the transfer

function from u,t to - The cost function is now defined by the output power little,:

J -- +up t1_I1_, (s3)
woEBS,wi E B_

Note that the white noise input u,o constitutes the worst-case disturbance for signals with

bounded spectrum, despite the fact that it is not in B_ and hence not in $ as it does not

have bounded power. However, the authors of this paper assume that the results derived

exist in the limit for signals in B$ _ white noise. Formally they do treat white noise as

a set member of B$ and assume white noise with unity spectral density '%o_o = I as the

worst-case disturbance for w0.

Let us at this point assume that a certain controller is in place so that the closed-loop

system can be written as

•_, = ,212+/)0w0 + _)twl

: = Ca:;, + D,tc,, (84)

where 2 contains x and .r_. To illustrate the schematics, we make the assumption /)t = 0

(Note that the proper case is treated in [15] and involves a more complicated set of Riccati

equations). Then the closed-loop transfer function from wl to z is simply given by Gt(s) =

C:(sI -_4)-_B_. Under this additional assumption, the following theorem can be verified.

Theorem 4.1 ([14], Theorem 1 and Theorem 2) Suppose _I > I[G_[G, the.

sup []Iz.]I_- =
woEB8

,.t,tEBT',w0 E B,.¢

T"'_++[boTX-,Bo]-ll_"' - "_-"b_X-,'_+ll_, (S.5)

T,-+,c_[B_o.'C,bo] (S6)
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_'? ^ T ,- *

with u't,,,,o,_t = ? "B l .X..r and X-, is the real symmetric positive definite solution of

.V.v, + .v.,A+ ?,-L\.,_,,9(x., + d_d : o (ST)

such that (]t- ?-2B_.X_) is asymptotically .stable and the parameter 7 has to be chosen large

_,,o._t,,._ot/tatll.', II;_= II-r-_&&GII__<:.

Note that the last assumption assures w: E B_. Furthermore the factorization w: = K.:"

can be motivated again. The actual cost J as defined in (83) can be computed using the ob-

servability grammian or the controllability grammian of the closed-loop system with :Vl,,,o,._t

in place.

Synthesis in a System with Two Disturbance Inputs

With these considerations the actual problem statement - the synthesis problem - as ap-

proached by Doyle, Zhou and Bodenheimer can..be stated as

Given a pla, nt ,g, DZB"-'2/._ and a prespecified ?, find an internally stabilizing controller K(s) that
solves the mixed H2/H×.-control problem:

rain sup [lt_fl_-'?llw, ll_l
K{s) wlEtP,u,oEB$

(88)

It. is obvious that if we restrict [[w_ [[_, = 1, thei: this cost function actually solves the problem

JDZB = inf sup 11:1t_ (s9)
K(s) ,coEBLC,;rl E B'P

Note that the supremum in the above problem statement is defined over _.vl E 'P and not

over w: E BP as this would involve an '?-iteration' to force :th into BP. As long as the

closed-loop system is stable, u.,: will always be in P. The optimal mixed H,2/H>_-controller is

defined for a ? that yields wt G B). It has to be kept in mind that the truly optimal mixed

H2/H_-synthesis problem is defined for IIw,tl_,= 1, It is clear from the cost function JDZB

that, for arbitrary ?, JDZB reduces to the pure H2-norm minimization probleln if tv_ -- 0,

and it reduces to the standard H.,_-norm boun d problem if w0 = 0.

The actual synthesis of the controller is performed by separating the problem into a so-

called Mixed Full Control problem and a Mixed Outl:mt Estimation problem, corresponding

respectively to the computation of a.n optimal feedback gain matrix and the design of an

optimal estimator. This procedure will not be covered here as the resulting equations are

dual to the equations derived 1)3' Bernstein and Haddad.

In the paper [.56] by Yeh Banda _-7, and (hang, it is proved that the two approaches of

Bernstein/Haddad and Doyle, Zhou and Bodenheimer yield identical necessary and suffi-

cient conditions if the Bernstein-Haddad approach is applied to the dual system of vDZB"-":2/ ¢_ "

That is, perform the following change of notation in the above Bernstein-Haddad approach:

D: -, Cr; D,_ _ Dr;
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B +C[;

A_ --+ A_;

R2 _ R0;

E_a --+ D_o;

C --_ LT;

R2..:. _ R2;

D T ,_72oo -'+ 2o0

-, -Fr;

I4 = I (pure scaling)

and

Then the equations derived from this new dual system by applying Bernstein and Haddad's

approach yield exactly the same necessary and sufficient conditions derived by Doyle, Zhou

and Bodenheimer in [14] so that the actual controller computation is reduced to the same

coupled equations as derived in [4]. This is a very interesting resultl The importance of the

work of Doyle, Zhou and Bodenheimer in this field is in the interpretation and analysis of

the type of disturbance signals in mixed H2/H._-analysis.

Finally an observation made by Doyle, Zhou and Bodenheimer is that the mixed H2/H_-

control problem is solvable only if the pure H_-control with the chosen _' is solvable (see

[15], Lemma 1). This is an important and intuitive result. If there is no controller that

soh'es the suboptimal H.×-bound problem for the chosen "7 then there will be no nqixed

H,/H.o-controller achieving the mixed H2/H,_-strategy.

4.3 The Rotea and Khargonekar Results

4.3.1 A Bernstein-Haddad Equivalent Setup with State and Static Output

Feedback

1Researchers Rotea and Khargonekar ([1S], [251, [26], [271) addressed two subproblems of the

above general mixed H2/H,_-problem. The first problem is similar to that of Bernstein and

Had<lad, namely

2 = .4x + Blu' + B2_z
vRK1 . -:2 = COX q- Do U (90)
"-'2/,._ .:,_ = C'_.r + D_ u

y = C2x + D2w

Their results are important because they provided a controller factorization that results in

'a convex optimization problem for the cases of state feedback or static output feedback.

The general problem statement that Rotea and Khargonekar addressed can be described as

follows,

"'For a plant w RK1 find an output feedback controller u(s) = K(s)y(s) such that ]1_2,,,]12 < a":"2/,x

subject to internal stability and IIT:._,_,II-_ < _'"'

Note that this problem has a slightly different design goal since it tries to satisfy a 2-norm

bound instead of a minimization of IIL   lla. However, the mathematics involved are almost
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identical to Bernsteinand Haddad'sapproachexcept for the parametrization of the controller
K. Note that here the case of 41 = 1 is consid_d which obviously can ahvays be achieved

by appropriate scaling.

Before we examine the more general case of output feedback, let us look at the simpler

problem of state feedback. That is C' = =2 I, D_ 0 and a state-feedback controller u(s) =

K(s)y(s). Then the closed-loop system is defii?ed by

2 = (,4 + B,_K)z + B,u,

z_ = (Co + DoK).r

2,_._ : (C 1 ÷ DII{)x

(91)

(.92)

(93)

Now, following Bernstein and Haddad, the condition IIL_,,..II.-_< 1 is ensured if a. real

syminetric positive definite solution }" exists foa" the following Riccati equation

[,4 + B2h']}" _- }[.t + Bah'] r + Y[C, + D, If]r[C, + D,K]Y + B,B r < 0 (94)

and (A + B,I() asymptotically stable. Define an upper bound for the 2-norm from w t.o z2

with the cost function

./(/,) = >.a_,[(Co + D0ZC)S(C0 + D0Z,):_] ___IIL=_.II== rr_cd(C0 ÷ DoI," L_(C0 + DoK) r]

(9.5)
So fat the results are similar to those of Bernstein and Haddad for the given

significant difference is in the controller parametrization. Let

system. The

K= WY -_ (96)

where I,V is a set of lnatrices of appropriate dimensions. Note that the matrix Y is symmetric

and of dimension n x n. Let :r E R", and u C R '_ and define the following set

f_ := {(lI, _") e R_,×"xO • _"> 0}

where @ is the set. of nxn symmetric matrices. If we put this controller into the cost. function

(95) and the corresponding Riccati equation (94), then the following functions can be defined

f(l.K_) = Y,'ace[(Co + DoI.Vt,-')Y((7o + D01_VY-1) T] (97)

Q(H\ }-) = .4} + }.4 r + B.21.I + 14"TB.T +BtB T + (C1} + Dll'|7)r(('l _ + D,W_(g8)

We can now define the new optilnization problem as

"'Find A" such that int.f(I,V, }") < a sub.iect to Q(B;Y) < 0 with (H.; I") E f_."

N'ext we cite some prol)erties of this optimization problem which have been proven in [27]"

1. f(W,Y) is a real analytic convex function on f_, this is the major contribution of this

factorization.

'2. Q(W,Y) is a convex matrix valued mapping from f] --+ O if Y is positive definite.

3. The set {(l,j:.Y) e f_ • Q(I,V,Y) < 0} is bounded if D, has full column rank
- = )- 1 ). and ,4. Aand (Ct, .4) is detectable, where d' 1 (I - D,(DTD, _D T C',, = -

B_(DTD,)-'DTc,.
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4. Under these a.ctdit ional conditions the new Ol)t.imization problem is a finite dimensional

convex optimization problem on a bounded domain, a very nice property.

The problem of a static output feedback design in the general system as posed in _RK1_2/,-_
can be solved by defining an auxiliary ss'stem that has a 'state feedback form' as a function

of a Riccati equation which in turn depends on the chosen "_. In this manner, the static

output feedback case is reduced to the state feedback case.

4.3.2 A System with Two Inputs and Two Outputs

The more general problen_ of 'simtdtaneous' H.2/H×,-control ([26]) involving a system with

two disturbance inputs and two criterion outputs has been considered. It is given as follows

,i" : Ax -}- BlW2 nt- B2w,_ +/_3u
_RK2 . z2 = Ctx + Dlu (99)
"-'21..: =..: = C'2x + D au

y = x

[t can be seen thai this approach is also restricted to the state feedback case. Let n denote

the dimension o{" the above s\'stem. Let Tz denote the transfer function between w2 and

z_, and LF=,:.the transfer functiou between ,,×and z_.. At this point it should be mentioned

t.hat all the previous attempts to solve the mixecl H.2/H_-problem are set up as constrained

optimization prol)lems. That is: "'Find a controller that minimizes I1 11: and IIT ,II. ,< C.

The approach taken in this work is of a different nature.

"'The controller to be found is admissible if it minimizes IIZ ll2such that the IlT .II,, ,< l"

The latter formulation represents an unconstrained optimization problem. The approach uti-

lizes a characterization of all dynamic state feedback controllers that minimize llr. l12.Among

these controllers then the ones that satisfy the additional H_-constraint are selected. The

basis for their analysis is the fact that the controller that minimizes IIT II is not necessarily

unique. Let us look at. the assumptions in their approach first.

AI: (,4, D3) is stabilizable,

A2: DI and D,2 have full column rank,

A3: The transfer functions from u to z2 and from u to z,×, have no invariant zeros on the

imaginary axis,

Z4: D [C'a D al -[0 I].

=

These are standard assumptions t.o ensure that an optimal LQ-state feedback controller

exists. Let's (.)+ denote the._loore Penroseinverse, i.e. XX+X = X and X+XX + = X +

and define the following matrices and Riccati equation

0 = ,4r.Yf + XFA - (DfCL + B 3-'_y)r( + Ba._F) + (00)

F -- -(DTDt)-'(DTC', + BraXF) (101)
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1-[_ = I- BiB + (10:2)

AF = ,4 + B:3F (10:3)

CIF = Cl + DtF (104)

C2F = C_ + D2F .... (105)

where XF is tile unique solution of ARE (100) and F is the state feedback matrix that

minimizes I[T II2.Ztowever, this is only one possible solution if B_ is not of full row rank.

The class of all minimizing controllers h'(s) can be characterized in terms of 2 transfe,'

function matrices. For that purpose we define the set S of transfer functions as

,5'= {Q c RH_ -Q = H,'H_(sI -AF) , I,V @_ RH,2}. (106)

Then Rotea and I'(hargonekar have shown in Theorern 1 of [25] that the class of all

dynamic state feedback controllers that minimize 11T2]]2 is given by

{ 2K = AFXA+B3r

u = Fy + Ir

K2(s)' t' = --IxK+Iy

Q s

(1o7)

The proof for this theorem consists of first using the Youla parametrization to show that

the defined class of controllers is actually stabilizing the plant and then this parametrization

is used to show that Q c .5' is the class of controllers that minimizes IIT211 .It is easily

verified now that if hn(Bl) = R" then [Ix = 0 and the above class of minimizing controllers

reduces to the minimizing static feedback 'controller' F (ira(.) denotes the image space.of

the argument). In this case, this design method will result in F as the optima.1 state feedback

matrix. The condition of whether or not IIT..:.]l_ < "Yis satisfied, has to be checked via the

according Riccati equation or the respective hamiltonian. On the other hand. If im(B_) is

a proper subspace of R '' then the freedorn given by the family of controllers in (107) can

be used to satisfy the additional H._-requirement. The following theorem characterizes the

class of all dynamic state feedback controllers that satisfy tile H.__-requirement in addition.

(,_ten a system _;?RK2 defined above, the problemTheorem 4.2 (Theoreln 2 in [25]) "' "-'2/_ as

of mi,,imizi,zg IIDq[l_ s,,c/, tt,,.t llT, ,ll, ,< 1 is soh.,able if and onhj if the following conditions

a re .satisfied:

1. The ARE

.4rX2,,, + X2,=,:A B'aB.ra- BaBar)-V2,,:,+ crc2 = 0

has a .stabili:ing po.sitice semi-defin.ite .solution -¥2._,

(108)

2. The .4RE

" T "v 7 (109)

has a stabilizing solution }'_,:,:.,
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,3.
p();._,._:2_) < 1. (11o)

where I,] = H1B2.

If these conditions are satisfied then the class of all optimal H2/H_-optimM dynamic state

feedback cont, rollers - optima/in the sense as defined above - is given by

K2°°(s) :=(,4 2_ , B2'_., C2,_, D2,_).

where

A2'_ = A + (I - O)B_H + OB3F + (I - O)B_Brx_
B 2'_' = A2XO -- OAF

(2''2''_ = H-F

D 2'_ = F(1-O)+ HO

6) = Z2B2I,"2+IIj

H - B._.¥2

Z2 = ( I - Y.,.._..¥2_)-1

Remarks:

1. The setup Considers the 'nonsingular' case, that is DTD1 # O.

2. Soh, ability of .ARE (108)ensures that [IT-,:,[]_ < 1 (see [13], Theorem 2).

3. ARE (109) and equation (ll0) represent conditions that ensure the existence of a

controller that solves the problem of minimizing 112:_I1_.

4. Note that 1_ = H_B2 = (I-B_Bt+)B2. Thus 1,_ = 0 and 1_+ = 0 if either im(B_) C R _

or ira(B2) C im(B_). In both cases, the optimal controller KX'_(s) reduces to the static

state feedback controller K2'_(s) = F.

5. A design algorithm has to solve ARE (100) to find F, then Theorem 4.2 can be applied

to find the optimal mixed H2/H_c.-controller.

6. This approach only considers the case of static or dynamic state feedback.

4.4 Other Approaches in Mixed H2/H,_-Control

4.4.1 Mustafa's Entropy Function

Before we present our design approach to the mixed H2/H,,o-control problem, the so-called

entropy (at infinity, see [64]) of a system needs to be defined.
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Definition 4.1 (Definition 2.2.1 in [64], see also [57]) Consider

a system H:=(A,B,C,D) with H E RL_:, if [IHII < -r the the 7-entropy of this system

(at infinity) I(H, 3) is defined as

I(H, 7) - 2z lnldet{I-?-_H'(Ja:)H(Jw)}[d_'
(111)

If []HI]_ >_ ^I then [(H, 7) is unbounded (infinite). Thus, the entropy of the considered

system is finite if and only if the chosen 7 is larger then finite. This fact establishes the

connection of entropy to the H_-framework, Connection to H2 can be established using

Lemma A.2.1 in [64] which states that

-In l(I- 52:\:'N)l> c2Trace{.\:*N}

With the above lemma it. can be verified that the entropy of a strictly proper system is an

upper bound for its 2-norm. That is, (see Theorem 2.4.4 in [64]) let H be strictly proper

and IIHII < then [(H, ;) >_IIHII . It can further be shown that lirm¢_,_ I(H, 3') = IIHIi -
From now on, entropy will denote the entropy at infinity as defined by Mustafa and Glover

in [64]. It, is obvious that the entropy as defined represents yet another characterization of an

H._-norm bound. The cost function used for ,nixed H2/H,_,-control finally is (see Definition

1 in [31]) as follows.

Definition 4.2 ([31]) Consider a system H(,_)= [Ho(s) Hi(s)] with. Ho(s) C RH2,

H_(s) C FtH_ and ]]H_[],_, < _,, th,en we define

1 [':' . ,
L(H,_)= _j_ Troce{(I ?-2H_Hf)-_HoHo}cla,

,._£,

(119)

In their paper [31], MacMartin, Hall and Mustafa have shown that L(H, 3) also represents an

upper bound for the 2-norm of H0; namely, L(H, *t) -> I[HoN_ and lil-m,_,._ L(H, "t) " IlH0lt_ •

Thus, for 7 ---+ _' the defined cost function represents a pure H2 cost fimction. For a finite

^t, L(H, ^t) represents a. compromise between an H2-strategy on H0 and and an H_-strategy

on HI. The best H_-strategy for llH_ t1._ < _t is obviously achieved if all the singular values

of H_ are as small as possible, and thus I[Hlll,_ is as small as possible. The H2-strategy is

pursued by the fact that L(H, ",,)overbounds llH0ttg.
The objective is to minimize this cost, function__fgr a certain 7 assuming that. []glll,,_ < _.

The actual minimization of L(H,'?) is performed using a state-space approach where the

cost is evaluated in terms of these state-space matrices. The system under consideration is
_DZB

identical to "--'2/_ defined above. Ho and Hi represent the transfer functions from w0 and wl
to z respectively'. The mathematical optimization is performed similar to the approach taken

by Bernstein and Haddad by appending the H:_-ARE to the cost. function via. a Lagrange

multiplier matrix. Derivatives of the resulting Lagrangian with respect to all the respective

matrices yield the required necessary conditions consisting of two ARE's and two Lyapunov

equations that are coupled. Solutions for these coupled equations are also based on numerical

methods.
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4.4.2 Steinbuch and Bosgra

Steinbuchand Bosgraaddressedboth setups(i.e. two disturbance inputs/one criterion out-
put as well asone disturbanceinput/two criterion outputs) as definedby Bernstein/Haddad
and Doyle/Zhou/Bodenheimer. For both systemsthey consider the static output feedback

case. The first considered system is of the form (81) with a cost function similar to that

defined in Theorem 4.1. The difference to the Doyle/Zhou/Bodenheimer approach is the

explicit assumption that u;l = Kx where x is the system state. This assumption is justified

by the form of u'l_,,o,._t as established in Theorem 4.1. The procedure involves once again

the forming of a Lagrangian and the subsequent derivation of necessary conditions. These

necessary conditions involve coupled quadratic matrix equations that have to be solved nu-

merically. A solution for the setup of Bernstein and Haddad follows by duality. The extension

to fixed order dynamic feedback has also been pointed out.

An interesting comment was made at the end of this paper, namely the authors suggested

that the worst case H×,-disturbance can be defined using an observer-based 'disturbance

generator'.

4.5 Summary

From the above presentation one can see that all analytical methods currently available are

based in one way or another on a set of Riccati (and Lyapunov) equations. Except fox• the

work of Rotea and Khargonekar (the two input/two disturbance case with dynamic state

feedback compensators), these resulting equations are highly coupled and can be solved only

using numerical methods. Also, all the a pl)roaches a ssunle white noise as the worst-case

disturbance for the H2-optimal strategy. In many cases, it is desirable to find a controller

that optimizes the system with respect to different disturbance distributions. This design

objective has not yet been incorporated into these approaches•

An important fact can be deduced from these approaches. In the 'two disturbance in-

puts/one criterion output" case as well as in the 'one disturbance input/two criterion outputs'

case, the worst-case disturbance for the H_.-strategy can be expressed as a linear combination

of the system state x. In the more general case of the 'two disturbance inputs/two criterion

outputs' Steinbuch and Bosgra suggested the use of a dynamical system to generate the
worst-case disturbance.

5 tf
On the Cost Functional/0 -'/ewT t)w(t)}d 

The above cost functional is closely related to equation (20). The relation has been estab-

lished by Craven (see [60] on pages 108-109). A time-domain definition of the H.:_-norm (in

equation (20) in terms of a LQ-type function can be done using a. Lagrange multiplier u to

include the constraint [[tt,][_ = 1 into the cost {[z{[2. We have

• ,, :r( 1)}dr]IHII, = £ { e)_-(*)+ ) -

The constraint [[w(/)N.2 = 1. is achieved in an iterative manner. If the problem is to determine

whether I]//ll,..:, < -_, the function defined in the title of this section is very valuable. Let
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w(t) denote the input and z(t) the output of a. linear time invariant system. A more recent

analysis of this cost function has been performed by C,. Tadmor ([48], [49] and [50]) and a

clear connection between inequality (21) and the above cost function has been established.

Let in this section {]_'[l_ = fo' t'r(t)t'(e) dr.

Observation 5.1 Consider a system G:=(A,B,C,D) u,here .4 is asymptotically stable,

a'(0) = .to, tf > 0 aud w(t) E L2. Defil_e T._: o " Xo _ z(t) aud T:_, " w(t) -+ z(t).
Tll e I'_

2 2

< llL=.o:m0]l_+ (ll ' 2GIi_ - -))llwltg

(113)
(114)
(llS)

The chain of inequalities can be verified using the norm-triangular inequality and inequality

(21). Now it is important to differ between t:.he cases .r(0) = ,r0 -_ 0 and x(0) = 0. For

x(0) = 0 we recover the inequality (2l.) When .r(0) = a:o :/0 additional terms based on the

system response to these initial conditions have to be considered. In general the following
can be stated.

Observation 5.2 ([49]) Consider a system G:=(A,B,(',D) where A is asymptotically

sta&l_,,,'(0) = xo, t_ --+x a,_d,,(t) _ L=. t1,_,_IIC;ll_< _ iy 0,e,-_.;_ a 5(.r0,,,') > 0 s,,eh
that

II:II_- _.'11,'1t_-<-_(.,0, _')ll_'ll_ (116)

Note that the above inequalities are valid for any Xo and any w(t) including the worst-case

disturbance w,,,o,._t(t) in L2. To append one of these inequalities with w(t) = w¢.o,._,(t) (by

taking max of both sides) as a side constraint to an H2-optimiza.tion problem the parameter

_(X0, W) has to be known beforehand. _5(x0, w) is not known apriori as it is a function of

the disturbance u'(t) and .to. The defined function is still valuable in the Hcf-sense due t.o

properties discussed i_ the remaining section. To see this let us consider a. maximization

problem for finite I,il'ne as follows.

Definition 5.1 Cousider the following optimization problem with G:={.4,B, C,D), .4 asymp-

totically stable, (A,B) co_ztrollable, (C,A) observable, x(0) = x0, t i > 0 and _t > 6(D)

j_O t t.,',(_c) = m_x {=r(t)z(t) - -)wr{t)w(t)}clt
,c fi L _

(117)

Note that the condition _,, > a(D) is a necessar)i condition for the existence of a maximum.
Applying standard Lagrange multiplier techniques, the above optimization problem results

in a Two Point Boundary Problem (TPBVP):

Theorem 5.1 Consider the problem defined i_z Definition 5.1 aud Jbr a finite tf. Then the

worst-case disturbance w0(t) is 9iven by

u,o(t) = (_2I - Dr D)-l[DrC.r(t) + Br,\(t)] (118)
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subject to

with boundary conditions

i(t) ,\(t) (119)

x(o) = ._'o (120)

A(tj) = 0 (121)

wh e re

:_7[= ( A + BR-I DTC' BR -1BT )--_2cT_.q'-'C -[A q-BR-'DTC] T ' (122)

R = (:3I - DTD), 5'= (i2I - DD T) and ,\(t) being the Lagrange multiplier vector.

Note that this is an 'open-loop' characterization of w(t), a closed-loop description of w0(t)

can be found in terms of the solution of a differential Riccati equation as follows.

Theorem 5.2 Ira sotutioa for the differential Riccati equation

k,(t) + 2,(t)[A + BR-'DTC] + [,4 + BR-'DTC]Tz,(t)

+2_(t)BR-_ Br2_(t) + 12c'T s-IC ' = 0
(123)

with the boundarg condition,

Z,(tj-) = 0 (124)

e:rists, then

j, = ;,,or 2, (O).o (125)

a nd

wo(t) = (.,2[ _ DTD)-I[DTC + BT2,(t)],r(t) (126)

Equivalent resuh.s can be derived for the infinite-time case. \¥e have

Definition 5.2

_0 tl {2 TJ,2(t,')=max lira (t)z(t)-72wT(t)w(t)}dt
u'EL2 t]_,.-'<,

(:27)

with the same assumptions as in defi,zition 5.1.

For the infinite time problem as t/--+ _, the differential Riccati equation will reduce to an

algebraic Riccati equation.

Theorem 5.3 If a solutiol, for the algebraic Riccati equation

2 -,T -,- l ,

[A T + CTDR-'BT]Z1 + Zt[.4 + BR-'DTC] + Z_BR-1BrZ_ + _' ( ,b d = 0 (128)

exists and

A + B(<,2I - DrD)-'[DTC + BrZ,]

is asymptotically ._table, then

(129)

J'a = a'r&zo (130)

and

wo(t) = ('[21 - DrD)-'[DrC + BrZ,]x(t) (131)
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[f a solution of this type exists then the associated TPBVP is also solvable. An important

observation from this theorem is that the worst-case disturbance for gf --+ :)c is of a "full

state feedback type'. That is, w0(t) = Kx(t) Can be motivated.

Some very interesting connections between the H._-norm and the optimization l)roblem

J2 are given by the Hamiltonian matrices _l,.l-,(see equation (10)) and M._ and the associated

Riccati equations. It is easy to verify' that the following is true,

M., = T-lYI-,T (132)

where

(__,,0 )T = ,F (133)
0 -_i

Note that T is nonsingular and has no eigenvahle ,\i with Re(,\,) = 0 for any -7 > 0. Thus

we have the following lemma.

Lemma 5.1 Co_.side r a sy.,t_ m G:= (.4, B, (', D) with ,4 asympt oticall.g .stable, (A, B) coutrol-

Iabh, (C,.4) observable al_d "t > 6(D), tl_el_ the J'ollowir_g stateme,_ts are equi_,aleat:

1, IlCll._,< ">.

:.,.[=_&- j_.i] ,,o,,.s,,,o,&,.v..,.,c _.

3. [3.L, - j_[] _7o,7._i,7g,lc,,. W c ::'_.

4. The ARE (13) has a utTique real positiee defiaite .*labilizin$ sohttio, .V1 = X1r,

,5. The A t_E (128) h as a u n ique real positive &fin ire .stabilizing .solution Z_ = Z T = "7.V_,

6. J2>O.

Tile equivalence of these conditions is easily verified using previous lernmas and theorems.

Note also that 3L, has the same eigenvahtes as 37I._. Furthermore, if the ARE: (128) has a

solution ZI as characterized in Lemma 5.1, t.hert tMs solution is unique a.nd is the only solution

that results in an asymptotically stable .4 + B(?2I - DTD) -l[oT( ' + BTz1]. Furthermore,

tile matrix Zt is the maximal solution of the ,eRE (128). That is, every other solution Zt of

(128) satisfies Z1 - Z1 > 0.

Assume that there exist solutions Z1 for the ARE (128) and 2_(t) for the differential

Riccati equation (12:}), then the value of the Cost function .]l(w) satisfies

=

J1 _- XOT21(O)xo : .FToz1JcO -- xT(tf)ZlX(_f) (134)

Thus, it can be verified that t.he optimal value of ,]1 is monotonically increasing and ZI >_

ZI(0). Hence Zt represents an upper bound for .]l(w) in the limit as t/ ---+ zc.. With these

preliminaries the following theorem can be sta.t, cd:

Theorem 5.4 ([53], [29]) Con.side," a .s.gstem G:=(A B, C.D) u'here A is asymptotically

stable, (A,B) co_trollabh, (C,.4) ob._ervable:, CT D = O, BD T = 0 and *_ > 6(D), then, for

.some 2" 0

llCll_ < _ <==> o < n_,_xlira /o'_'J-'-":'. {zr(t)z(t)- v_wr(t)w(t)}e,',< _ (135)
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The "if and ony if' relationship between ItGI[,_ < 7 and the nonnegativity of J2 has ah'eady

been established in lemma (5.1), thus the only remaining part to be proven is the boundedness

of ,12.

Willems in [53] stated a proof that connects NGlt,_o< 7 and the finiteness of the above cost

functional directly via the frequency inequality while Magierou [29] showed that. the solution

Zl(t) of the differential Riccati equation (123) is monotonically increasing. An alternative

proof based on the associated Hamiltonian is possible also. Thus, if there is no symmetric

positive definite solution to the Riccati equation (128), then the solution Zl(t) of (123) and

thus the value of the cost functional J2 will grow unbounded for some x0. Let us now

define an alternative form of the above cost function, namely the cost function J2 with the

worst-case disturbance _vo(t) = (_["I - DrD)-_[DT"C + B'rR]x(O in place where the matrix

/_" is used as a design parameter in the determination of the worst-case disturbance. The

orthogonality condffion finally guarantees, that the worst-case disturbance can be generated

by R.

Definition 5.3 Con.si&r a .sy.ste,_ G::(.4,B,C,D) _vh.ere .4 i.s n.symptoticalIy .stable. (A,B)

co,,tl'ollabte, (C..4) obse,'_,able aJ_d _ > _r(D). 14:e defi,ze

= max lira T"ace{. fsjo er'-'[_"2cT'5'-tC - RBR-'BrR]er'dt} (136)&(R)
I_" tl --,x

_vhet'e t? and S aJ'e defined in eqtmtiot_ (12 °) and

V = A + BR-_[DTC + Br/_ ] (137)

Note that .]a(/_') is just .]2(') with the parametrization of w(t) = (_2I - DrD)-_[DrC+

BrR]._:(*). With the assumption 3 > o(D) we assure that. R and .9 are positive definite

matrices. We now know that, if IIGtI_ < "t, the unique ma×imizing /_" = Z_ is positive

definite, symmetric and the closed loop system is asymptotically' stable, in this case 0 <

J2(Z_) = J3(/_') < _,. [f we consider the case _(D) < _/ < IIGll, then the ARE (128)

indicates that there is no positive defiuite ZI that 'stabilizes' the system (there is no solution

of ARE (1"28) at all that results in a stable closed-loop system at all). That is, there is

no symmetric positive definite /_" that solves the associated Riccati equation such that F is

asyrnptotically stable. If we look at the maximization problem for Ja(I() it can be verified

that for R = el (for some e > 0) J3(/_') > 0 can be achieved. Thus we can conclude

that Ja(/_') > 0 for any maximizing /_" as long as we assume "_ > a(D). Furthermore,

*'or #(D) < < Iloll . we know that the maximizing /f will result in an unbounded cost

function value .Ja(/_') for ty ---+ x,. Note, that the cost function ./a(/_') corresponds to an

initial condition x0 with x0,r_ = I. Such an initial condition does not exist, this assumption

has its justification from stochastic interpretation in terms of covariance matrices. It can

be seen that R will attempt to destabilize F by being 'large', at the same time /_" must

be 'small' enough to not excite this 'destabilized' mode of F with a negative eigenvalue of

[7_-CTS-1C '- RBR-_Brl;]. This would lead to a negative unbounded cost function value

which is not in the interest of a maximizing strategy. We also could use a parametrization

wo(t) = Kx(t). With this parametrization of the worst-case disturbance for the H_-bound

problem we arrive at a cost function .]3(K) similar to Ja(R). Namely

/o"&(a) = max r,'a e{ + DI,')r(C + Da') - (aaS)
/x t I ---x,
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where G = .4 + BI\'.

Similar observations can be made about this cost function. For K = 0, Jy(A) >_ 0. Thus

every maximizing K once more will yield a non-negative cost. However, it will be more

convenient to adopt a parametrization as in (1:31), as this 1)arametrization will allow us a

better comparison with Riccati-based approaches.

The additional t e,m J_J[-?2wr(t)w(t)]dt in tile cost function d2(w) plays a similar role as

r_Jrlur(l)_l(l)]dt i the LQ-design. As _othe term J0 t_; n ---, :>c, the "cheap' control case is ap-

proached in LQ-design while _ < ]lG:,_,l]._, is equivalent to 'cheap disturbances', meaning

that the disturbances w can have uifl)ounded power. The worst-case [t_ disturbance w is

necessarily of boul_ded power if [IG:_,[[._,< _ so that this cost flmction actually represents

max_limtf_,_, fo f zr(t)z(t)dt for [IC;-,_,tl__. < _, if we iterate on -;, to achieve lilt,oil2 =- 1. If the

solution exists, t.hell furthermore Wo C L2.

Example:

(_'onsider the following system G := (.4., B;C, D) with

-0.01.68 0. 1121 0.0003 -0..5608

-0.0164 -0.7771 0.99,15 0.0015.

,4 =, -0.0417 -3.6595 -0.95-14 0 ....

0 0 1.0000 0

C=(0 0 t 0), D=0,

, /3=
-0.0243)

-0.0634

-3.6942 "

0

then it. is easy to verify that the conditions in .theorem 5.4 are satisfied. The .zc-norm of G

call be computed to be 11(;115= : .990:3. The f@.0wing plot then shows tim value of the cost

function (136) in Definition 5.3 over lhe finiti%t:ime t.t- for three different values of _. It is

easily" seen that, for 9< IlC,'Ii.. the plo* diverges to large x'alues for large t,: and to infinite

values as t./- _ ,:x:, while the cost remains boun_{ed and converges t.o a steady-state value for

large t I if _ is chosen such that "_ > IIC{t._.

The H._.-cont.rol problem is in general a lnin-lnax problem. We naininaize a cost function

with respect t.o the controller l)arameters wllile maximizing the cost function with respect

to the disturbances. To see the connection betyveen this mitt-max H._-control problem and

the cost function in this section let us look to a game theoretical problem associated .with

the cost function. To shorten this presentation only' the ca.se for infinite t/is considered. For

finite t/similar results ca.n be developed. For this purpose define a system as follows.

2 = A,r+B¢e+Fu, ,r(0)=,r0G:= _ - C,r+Du,+Qu (1:39)

where.r(t) represents the state of the system, u(t) the control input and w(t) the disturbance.

Now a game problem can be formulated as follows.

Definition 5.4 Con.sider a s_j.stem described in (139) with (A,B) controllable, (.4, F) con-

trollable, {C,A) ob.ser¢_,able, D = O, fUC = O, f_rf't > 0 and define

£'.I4(., w) = rain max lira {:Y(t)z(t) -- _t2wr(t)w(t)}dt (140)
uEL2 zt'EL2 tf_'._,
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1.4--

J vs Tf for Different Values of _/
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Figure 1 Worst-Case Design

Note that the assumption D = 0 is not restrictive, it can be easily removed. This assumption

is only made to facilitate our presenlation (for a complete treatment see [24]). Without the

assumption _T_ > 0 the I)rol)lem is a singular game problem. Let us skip here the associated

Two Point Boundary Probleni and examine directly the associated Riccati equation for

tf _ oo.

Theorem 5.5 ([35] [29] [53]) [n the limit as t y + ,:v the rain-max problem .slated in Deft

inition 5.4 with a platzt (I39) has a finite solution for .some xo if and only if the ARE

r(f_rf_)-'_rc'] r & - &[r(_r_) -' r r - +Bar]& + CrC = oZ2[A F(f_rf_)-I f_rC] + [A
/

(141)

has a positive semi-defiJtite ,solutio_ Z2 such, that

t BBTZ2,4 - lP(Ftr9,) -_ [g.rc+ FrZ2] +

is asymptotically .stable, then the optimal .strategies are given as

Uo_,t(t) = Ko:r(t)= -(f_rf_)-a[ft_rC + F rZ,_]z(t)

1 BrZ._ar(t)
.,o,.,(t) = I<,_,.(t) =

and the value of the ga,me is given bg

J_(_,o_,,_,o_,)= a'orZ_,:o> 0

(142)

(143)

(144)

Furthermore, in this case wo_,t(t) E L2.
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The resulting ARE is a so-called game-theoretical ARE, characterized 1)y the sign-indefinite

term [F(g/Tg/)-IF 7 - _/3/3T]. The proof is based on the same references as in Theorem

5.4. Connection between this game t.heoretica] problem and tile H:_-control problem has

been pointed out I)3' - among others -Tadrnor in [49]. It. can be verified by comparing ARE

(141) with the ARE in Theorenl "2 of {13]. Let % denote the smallest H.>_-norm from w to

-: in (1:39) achievable with pure state feedback, that is u(t) = K,.r(t). Let T:,_, denote the

closed-loop transfer function between u' and z in (139) with u =/(j in place, then

Theorem ,5.6 ([49], [13]) {',de," tt_e ass_,,,,ptio,,s made h, [13] and nrn > O, the,'e e.ri.,_ts
a _tat_ j>_db_a,_o,t,'ol ,(t) -- /,'.._,(t) s,,_Z,O,_t _ > _o (tt,at i, min,.-o[1_,t!,-_ = .;o <
5) if and only if the ARE (141) has a symme.tric positice definite solution Z2 such that

I BBTZ,a is asymptoticall_ stable..4 -- r(flTf_)-l[f_Tc + I'T z2] q- 7p . .

Thus, a finite value of the above game, and hence with ./4(u,w) being bounded implies

that there is a state feedback matrix that stabilizes the system and achieves [[T:,,.]I,, < ,..

Furthermore, the worst-case disturbance can bear tile form wovt(t ) = K.r(t). If we consider

static state feedback controllers, then .14(u, w)being unbounded for a chosen _ implies that

there is no state feedback matrix that achieves the bound ]IT:,,.I[.._ < "?,. This, in turn,

implies ) _< "?,0. If a general compensator st.rllcture is used, then unboundedness of J4(u, w)

implies that the given controller cannot satisfy the bound {l_,u[l.x. < "y. It is obvious now

t.hat the cost functional considered in this section represents a useful tool to incorporate an

H_-const.raint into a /-/_)-cost function.

6 A LQ-Type Cost Function for Mixed H2/H_,-

Control Design

The previous section motivates a parametrization of the worst-case H=,=,-disturbance in the

form of a state feedback w(t) = K.r(t). It should be noted, that other paralnetrizations are

also possible. \\:e could, for example, assume that tt, is generated by an independent linear

system (an open-loop parametrization) or a factorization w(t) = K,oe2'_t in the definition of

a frequency-domain cost fimction. The state-feedback characterization, however, has proven

to provide many desirable connections to tile H_-bound problem.

In this section we propose a LQ-cost function that represents the mixed Ha/H._.-bound

contro] problem.

6.1 The One Disturbance/Two Criterion Case

The system under consideration represents the most general case of the one disturbance

input/two criterion out put case. Let

.i' = .4X + BlU' + Batt,

2' 2 -- (']'liF + Dliu, + Dt3u

:.x. = C.2x + D21w + D23u

y = C'3,r -t- D31 w -1- DaaU

.r(0) = a,0

(14.5)
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where it is assumed that the system uncertainties are all lumped into one _-block aJready,

* where a is some positive constant. Note that the smallnamely w = 5z_, with [[_XI[,=,:,<

gain theorem tlien provides robust stability as long as the Hoo-norm of the transfer function

from u' and z_, is smaller then "). Furthermore the following assumptions are made:

AI: .4, Bl) and (A,/3._) are controllable pairs,

A2: C1, A), (C2, A) and (Ca, ,4) are observable pairs.

The compensator is assumed to be proper with the general structure,

{ :/:_ = ,4_x_ + B_y, x_(O) = X_o
Ec := (146)

_l = C'_x_ + D_y

For the H_,-part of otlr cost function the disturbance w is parainetrized in the form

"'=l""r+h'2"r_=l"( x)x_ (I47)

Define furthermore the two subsystems,

.i" = .4x + Bitt, + Batt,
E2 := z2 = Clx + Dllw + D13u

,_y = (:3 " + D3_w + Daau

,i" = .4.r+ Bltt' + BatL,
_"]x := -7.:x = C'2 x + D21w + D23u

Y = (a." + Dalu' + Daau

x(O) = xo

x(O = Xo

Then the closed-loop system with the compensator in place has the following form

,

tF cl --_-

vl/2
"¢"Scl :-- Z2

Ad.rcl + B_lw,

C'lc/Xcl + Dllcl_'

C2clXcl + D21clw

where

"l:cl -7- ( "Y)32c

A + B3 ( I - D_ Daa )- 1Dc C3.4_l = B_C3 + B_Da3(I - D_D33) -I D_C3

( B,+B3(I-DcDaa)-IDcD31 )Bd_ = Dal + Daa( l - D_Daa)-I D_D31

C1d = ( Cl + Dla(I - D_Daa)-iD_Ca

zd(O) = ,r_lo

Ba(I - DoDaa)-IC_ "_

A_ + B_D_(I - D_Daa)-IC_ ]

Dla(I - DcDaa)-IC_ )

= ( D,,+D,3(I- )

(14S)

(149)

].50)
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C2_, = ( C2 + D23(I-D_D,3.s)-ID_C'3 D2s(I-D_D33)-'Cc )

Let Co denote a nlatrix

De C_)

that contains all the compensator matrices. Now the cost function can be defined to represent

the mixed H2/H,:.-criterion. To do that, we define the two separate cost functions J2(Co, t/)

J_'(Co, K, t/) as follows.

Definition 6.1 D _ fi II 6

.]2((' u, If) cr_ T,= _t_z tls)Q=2(ts) + "T(tJ)R_"(ts )] (1.51

subject to the system E2. th_ compel_.sator Ec, w(t) white noise with unit .spectral den.silg,

Q = QT > O, t_1 = R T > 0 and the con.strainl ]C'%] < _l/c Vi,j, where 3.[_ is an upper

bound for" ev(r_ el_tr!} iu ('o.

Definition 6.2 Dqfine

._0 t tj_(c0, .,. _j) = J_(c0. I,, tz) = [J(t)._(t) - 7_,,r(t).,(_)],lt (152)

subject to the sgslem E_. and the compensator Ec. If a certain, controller Co is given,

pe,Jbrm the preliminar 9 tran._,formation u,(t) = (.,21 - DTt_lDll_t)-l[DrctCl_,r(t) + BT£(t)],

t_,(t) = h.r..t(t), K = A"r > 0 aad [I(,j] <_ ,lit( Vi,j, inhere :l/t, is an. upper bound on. all

entries of K.

With all these preliminaries we now can finally state the cost function:

_112 and a compensator Ec Then th_ cost function forDefinition 6.3 Assume a system _S " •

a mixed H2/H_-&sign is &.finxd as .follow._.

J2/_'(Co, h" ) = minco { 3[,}_ ,']2(('°'tf)] + (1- 3)[n}ax ',lim-_ J_'(Co, h',ty)] } (15:3)

subject to Dll_l = 0 for boundedness of J2(Co,,_,),

e(D_) < 7,

(I - D_Ds3) is non, singular for .,ell posedness,

([C2d + D-2,,:_h']T[C.2_t + D.21_h'] - "t2KTh ") > 0 VCo for non-negativity of the cost function,

(,%t, Bj) is a controllable pair,
• _,T T

, D21cl(Cl_l, ,4¢t) and (C.2_l, ,4_t) are observable pa_rs, (2_1D21_1 = 0 B_ = 0

a.d 3 C [0, t].
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Interpretation of the Cost Function and Comments

In general the cost function represents the weighted sum of a weighted H2-criterion

J2(C0, tf) and a H,_-bound criterion Joo(Co, K, tf). That is, having chosen a 7, the

design based on this cost function attempts to minimize the H2-norm from w to z2

while satisfying the H._-norm-bound from w to zoo by 'minimizing' J_(C0, K) to a

finite value (in the limit for tf ---+,_c). Note, that - in the limit as tf ---+,_- J2/oo(Co, K)

will be unbounded if either the design yields an unstable System o1 the H_-bound is

violated. If .12/_(C0, h') is finite, we know that the design achieved a stable closed-

loop system with an H_.-norm from u, to zoo larger then 7o, the minimal H._-norm

achievable with state feedback. The algorithm proposed in the next chapter will give

more insights into this problem when general compensator structures are considered.

The set of all feasible compensators can be characterized as follows:

"A compensator Ne is feasible if the compensator yields a finite value for ,]2/_°(Co, I()."

This charact.erization can be based on Theorem .5.5 or on the algorithin used for the

actual computation of the compensator, namely a sequence of minimizations and max-

imizations. The set of feasible compensators can then be motivated by Theorem 5.4.

The cost. function as posed represents a 'simultaneous mixed H.2/H:_-bound-approach .

That means, it represents an unconstrained optimization problem (unconstrained in

the Hx.-sense), as both objectives are explicitely contained in the cost function. The

design objectives can be SUlnmarized in the following form:

"Find a controller that internally stabilizes the system, that furthermore minimizes

the 2-norm from w to z2 and satisfies an H:_.-norm bound from w to z_."

It can be verified now that the set of feasible compensators as defined above satisfies

these design objectives.

The assumption Dll_-t = 0 is necessary for a finite H2-norm from w to z2.

O'(D21ot) < 7 guarantees that the cost flmction ma.xi_-limtj__. J-_(C0, K,/f) is positive

for a given Co, it furthermore is a necessary condition for the existence of a maximum

for max,, J"-': (Co, w, t,,). It is easily seen that in the case of a strictly proper compensator

it is necessary for < _ that &(D2_) < "_.

The observability and controllability assumptions A1 and A2 as well as the orthogonal-

ity assumptions in definition 6.3 assure that there is a xd(0) such that the cost function

J_'(Co, K, t]) will grow unbounded when the H._-bound is violated (unbounded in the

limit as tf --+ _c). The controllability assumptions are also necessary for the system

to be stabilizable by u and disturbable by w while the observability condition assures

that there are no unstable hidden modes unaccounted for in the cost function.

" T ' D21_tK] "I2KT[_) > 0 VC0 is a suffi-The assumption ([Cad + D21dh] [(_2j + - -

cient condition for minc0 limtl-._ Joo(Co, K,Q) to be non-negative for a given K.

Without this assumption the minimization of J_(Co, K, tl) might result in a nega-

' etire infinite function value. (as_s can be constructed, where only a small adjust-

ment of the controller parameters results in a negative infinite cost (without re-

ally changing the dynamics of the compensator during the minimizations). Since
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our approach is gradient based a sequence of minimizations and nlaximizations)

the case could arise where the cost function J2/'_'(Co, K) alternates indefinitely be-

tween a large negative cost (when the minimization is performed) and a large positive

cost (when the maximization is performed) without convergence. The assumption
-, - T -'

([(-2ct + O21d[_ ] [( 2_1 + D2_c,I\'] - 72A'rK) >_ 0 VC0 excludes this case.

.121-_'(C'o, A') is continuous in K as well as in 5"70as long as (I - D_D3:3) is nonsingnlar.

If continuity problenas arise in the algorithm we can always assume D3a = 0 for the

design and then reincorporate Daa if the final design for the plant with Daa = 0 is well

posed (see [66] section 5.5.2).

The restriction Oll the entries of Co and h guarantees that. the domains for Co and K

are closed and bounded. This restriction also avoids the 'infinite gain case'. That is,

no element of Co or [\" can grow unbounded.

3 is a weighting factor that allows a mixin, g of the H<,-bound-. and H2-criteria. In

the limiting cases (3 = 1 and ,3 = 0) th_ implications for the optimization problem

are obvious, namely the reduction of th< cost function t.o either a pure H2-problem

or a pure H_,-bound problem. However, as pointed out in the results due to Doyle,

Zhou and I'_hargonekar, the mixed H2/H._.-problem as stated is solvable if and only

if the pure H_-bound problem has a solution. Thus, at this point the implications of

3 C (0, 1) are not completely clear, practical designs and their dependence on fl will

be considered.

The cost. funct.ion allows an optimization of the H2-criterion over noise distributions

other than white noise by using shaping filters.

If an additional 3.-iteration is included in the algorithm, the true mixed H2/H,_-

problem can also be addressed. Furthermore, if structural knowledge about A is known

the _u-synthesis problem can be addressed by introducing appropriate unitary scaling

matrices (see e.g. [12]).

The cost function .12/'_'(Co, I() is not. concave in K, nor is it convex in Co. At least no

proof has been found so far that it. is concave in K. This raises the question if there

is a different parametrization of the worst case H...,:-disturbance that forms a concave

optimization problem.

6.2 The Two Disturbance/One Criterion Case

The above considerations can be applied to the two disturbance input/one criterion output

case. Here we consider the most general system with two disturbance inputs and one criterion

output ..............

y]2/1 / "b _-_
S := 2 -----

( g =

A:r+Blwa+B2w_c+Bau, x(O) =:ro

C'lx + Dllu'2 + Dl_w,_, + DlaU

Cax + Dal w2 + Da2tv_ + Daau

(154)
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with the additional assmnptions

AI': (A, Bi) for i=1,2,3 form controllable pairs,

A2': (el, ,4) and (Ca, A) form observable pairs.

The compensator for this case is assumed to be of the same form as in the one distur-

bance/two criterion case. Forming the closed loop system with the compensator in place

yields

E2/1 . f .},,l = Ad:_d + Btctu,.2 + B2c;W_, _d(O) = ._:Jo
ScI = [ C C*lcl2cl °I- DllclW2 "4- L)12cllo,>a

(1.55)

where

+c,=(+)
( A + Ba(I - DcDaa)-IDcCa Ba(I - D_Daa)-TIC-'c )•4-a = B_C3 + B2Da3(I - DcD3a)-tD_Ca A_ + B2Daa(I - DcDaa)-lC_

/),c; = ( BI+Ba(I-D_Daa)-'D_Dz,)BoD:n + B2D3a( I - D_.D33)-I D_D31

( B2 + B'3( I - D,.D3a)-' D_..D:32 )B2_ = BcD,32 + B2D33(I £- DcD33)-IDcD32

(='1ol = ( C, + D,3([ - DcDa3)-' DcC3 DI3(i - DcDaa)-ICe )

+b_,,_, = ( D.,, + D,a(I - V_Ds3)-' DcD31 )

Dl2c,/ = ( Dt2+Dt:/I-D+Dz3)-'D+D,+2 )

The cost function for mixed H2/H,_.-control is similar to the one defined above. However,

here z plays the dual role that _t, played in the one disturbance/two criterion case.

Definition 6.4 Consider the system E_/1 and the compensator Ec. Then the cost function

for a mixed H2/H+-de.sign is defined a.s follows

£'J2/'+(Co,[() = minmax lira [zr(t)z(t)-'_2wr_(t)w_(t)]dt (156)
Co tv2,K t l--,x, ' "

subject to Dll_t = O, O(D_.2_) < 7, (I - D¢Da3) is nonsingular and w_(t) = K,_d(t) aTM

w2(t) white rwise u;itl_ _;,_it spectral den.siQl.

Note that this definition represents the 'key cost function' for our design approach to the

mixed H2/H_ problem. Additional assumptions have to be included in order to avoid

negativity of the cost function or unobservability/uncontrollability. This cost function has

similar interpretations as those given in the one disturbance/two criterion case and are

omitted here.
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7 Algorithm For The Proposed Mixed H2/H, o-Control

Design

As mentioned in the introduction, the setting is that of a finite time with an LQ-type cost

function for tile mixed H2/H._-optirnization. This finite time setting has the advantage that

all defined LQ-type cost functions are well defined. In the limit as t j- ---+ zc, time domain

functions can only be expressed in terms of Lyapunov and Riccati equations. This formu-

lation has the "ad\antage' that, in the steady-state form, it. recovers tile problen_ associated

with Fliccati-based approaches. The approach taken here follows [2a] in which a certain pre-

specified compensator structure is chosen (not necessarily of the same order as the plant).

Starting at a small t/, this compensator structure is ol)timized with respect to the worst-case

disturbances. Once an optinfized solution for the compensator has been found, tf is increased

and the process repeated. The design procedure eventually settles to a t t representative of

the steady-state condition. Even if the final result of the algorithm does not yield a. feasible

compensator, we still can make statements about the resulting closed-loop system based on

the individual values of J'":(Co. K, Z/) and ./2(C0, K, tf) and their "time-histories'.

Attention in this section is restricted to the one disturbance/two criterion case, an equiv-

alent algorithm can be define(l for the dttal case of two disturbances and one criterion output.

Note, that the problem

rain max lira .J": (Co, Ix, l f) (1.57)
C0 K ti--.x,

as stated in Definition 6.2 is a true min-max problem added to the pure H2-problem. For

the Ha-problem we aheady know that the worse-case disturbance is white noise so that. the

H2-part of the problem is actually only a min:pr6hlem.

A complete derivation of the pure H._-bound problem in terms of game theory has been

presented recently by Rhee and Speyer in [42]. Solutions are given in terms of two ARE's

(the same as derived in the DGI(F paper). A complete analytical treatment of the mixed

H2/H._-bound probleln il-i game theoretical terms, however, is still missing.

.-ks discussed earlier, there is no guarantee for the existence of a saddle point solution for

the rain-max problem as posed by ,J2/'_(Co, K). The algorithm used here is the algorithln

as suggested by Sahnon (see Chapter 2) that is modified to suit our problem formulation.

It searches for rain-maX optimal strategies in ti{e sense of definition 2.14. The assumptions

made in the last chapter assure that the optimization problem is continuous in Co and Ix"

with closed, bounded domains. No further assumptions are made. The algorithm and a flow

chart for the actual design are outlined as follows.

The Algorithm:

1. Initialization:

Choose initial if0, (7'0 (not necessarily stabilizing), x0, x_(0), 7, 3, Q and R1.

Select an initial set 1(71 = {K l, A"2, ..}.

Set n.= 1, i= I.
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"2. n u' rain-max iteration for t: = t:i:

If Acl is unstable let _3= 1, otherwise let ,3 = ,.3.

Perform a milaimization with respect to Co as stated in Definition 6.3 for all K E A-.":

t¢,)]+ (1 J":(Co,/,, q,)dt]} (15s)

Let the minimizing compensator be denoted by C_.

'" J2/_:C" K, t.f_)Compute J, (Qi) = max/,exr-. _ 0,

Perform a maximization with respect to K as stated in Definition 6.2

l 'z¢ I":' n
max,, t'_'O, A', Qi)

N

3.

and let the maxinaizing K be denoted by K".

Compute J_t(tji) = J_/_(C_, lq _, Qi).

Form £1',,+1 = KT,_U {A'"}.

Termination criterion for t S = tli:

If IJ_"(tii) -.],'f-_(Qi)l >- _, let n = 7_+ t, i = i, go to step "2.

rf l.L;"(ts,)- d,7',(ts,)l < <:comp ,t = -'{>"(- 2 " _ tsi) + a_'(t:")} and continue at

step 4.

General termination criterion:
2//,._,

If I.Jy'_(Q,) - ,Yi-i (t/(i-1))i >- _- let , tf(i+l) = tti q- At/, i = i + 1, n = 1, _ - lC '_

and continue at step 2.

If IJJ_(Q,)- Ji2f_:(ti(i_l))l_ < s stop.

Comnaents:

'2.

Pure continuity of j2I_((' o, A') in C0 and /( is sufficient for J2t(Qi) to be unbounded

as t: --+ oc if the H,_-bound is violated and for J_(t:,) to be a monotonically in-

creasing function of 11 (the latter fact is ascertained by the optimization over an in-

creaasing set K). From the considerations in Chapter "2 we also know that J_,t(t/i)

is an upper limit for mine0 iriax:;J2/'_(Co, K, tsi) and .J2_(tsi) is a lower limit for

minc0 max/,- J21"':'( Co, K, t i,).

Let, us look at the possible outcomes of this algorithm in the limit as t: _ ._c:

J_(tsi ) unbounded and J_t(tsi ) unbounded or, J_,"(ts, ) converges and MJ.,_ (is,

unboul_.ded. Then the H._.-bound is violated and/or the closed-loop system is

unstable.

J,_(tj,) converges and J_1(tli ) converges but J_(Qi) # J_,W(t:,). Then the system

is asymptotically stable and the H_-bound is satisfied.

J,_'_(ti, ) converges, di}t(tsi ) converges and J_(ts, ) = J_VS(tli):

The system is asymi_totically stable and the H_-bound is satisfied and the strate-

gies represent a saddle point if the optimal Co and K are in the interior of their

respective domain.
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. Choose
nl

J2/_(C 0

Initialization

tlo ,At/,C O ,Xo ,Xco , y ,_3 ,Q , R 1

K' ={K 1 ,K 2 , "'}

].,.

max j2/_ (C O K )"(t fi) = x_K ° , ,t fi (tli) = maxJ 2/_ (Co,K,t_) _ K n
K

K n+l = K n vo { K n}

(tfi)-J m ( t <_n-I t_

,_Yes

No

tfi)}

n= n+l

(_] 2/°_ ( t fi ) - J 2/_ ( t fi_l ) ]

Yes

= C n K = K n
)t 0 _ opt

t li+l = t t_ + At I

i-=i+l

Figure 2: Flow Chart of Design Algorithm
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Theoretically there could also be the caseof 'limit oscillations' of J_'l(tji), meaning

that .J_1(tji) does not diverge, but it does not converge to one value either. The

system is asymptotically stable and the H_-bound is satisfied in this case. The actual

implementation will show whether this case is relevant and has to be included into

the general framework. These possible cases show that the goal is not necessarily the

finding of a saddle point but_ rather we seek the 'boundedness' of .l_,m(Qi) and j,,M(tsi )

in the limit as t/ --+ ec. A saddle point strategy is a special case of all the possible

strategies that satist_' our design goals.

3. Note, that the algorithm as shown assumes that a stabilizing solution exists, that

satisfies the H,._-bound. Other "checks' have to be incorporated to detect all possible

cases as described above. The algorithm as presented shows the schematics and the

most important steps only.

4. If the above scheme turns out to be computationally too costly, (Note: all previous

computed t( have to be stored) then a sequence of pure maximizations and minimiza-

tions (without retaining previous K) will be applied. This would be equivalent to

finding the worst-case disturbance for an existing system followed by a reoptimization

of the controller with respect to these disturbances. This approach has been used for

example by Rhee and Speyer in [40].

5. Note that the optimization problem as stated here allows the worst-case H_-

disturbance to be unbounded, if a characterization of the _-disturbance w with

tc E L2 is desired (see e.g, [47]), then this can be incorporated by constraining the

maximization steps to an asymptotically stable closed-loop matrix Ad (with the max-

imizing u, in place).

6. [f the closed-loop system for a certain controller is unstable, then only an H_-

optimization will be performed until a compensator is found that stabilizes the plant.

will perform the selection.

7. The algorithm does not guarantee stability or the H_-bound for the actual limit as

t/ --+ _,. Hence, after the design procedure has been terminated at the largest finite

time t/ that can be implemented on the computer, stability has to be checked via

the eigenvahLes of the closed-loop A-matrix, Ac¢, and using the H.__-ARE to examine

whether the actual design specifications have been met.

8. The optimization will be embedded into the design tool SANDY and thus uses a

gradient-based method to achieve extrema. This however does not necessarily guaran-

tee a global optimum.

. As the cost function is not convex in Co nor is it concave in K, this approach represents

a controller design with worst-case H._-disturbance achievable by the initial guesses of

I( and Co.
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8 Sumniary and Concluding Remarks

The pure H.-,:.-bound control problem has been solved in algebraic and game theoretical

terms. Connections have been developed in the last. technical report (see /24]). On tile

other hand, the mixed H2/H_-bound control problem can be viewed as a combination of

a stochastic and deterministic game (see e.g. the results of Doyle, Zhou and Bodenheimer

in Chapter t:). An algebraic solution cannot be derived as easily as in the pure H_ case.

A formulation in terms of a. LQ-type cost function is still possible in mixed H2/H_ control

problems where we have to optimize over two different types of disturbances. Solution using

standard Lagrange mu!tipliers has to be extended to cover this case. This is a topic of

ongoing the6retical research in this field. ........

A frequency-domain cost. as defined in secti.on 6.3 of [24] seems to be promissing for the

definition of a mixed H.e/H,_ cost function: This approach, however, will not be pursued

further here. Rather, we will concentrate on t_he approach as presented in this report. The

proposed formulation offers many insights into the mixed H2/H.x.-bound control problem

and has many close connect ions to the algebraic approaches of other researchers a.s discussed

in Chapter 1. A frequency-domain parametrization of the worst-case H.-,:.-disturbance as in

section 6.3 of [24] cannot provide these pr0pefl;ies.

The approach presented here, uses a parametrization of the worst-case H×-disturbance

in tile form of u, = K.r to formulate a cost fimction that represents a mixed H2/H,:c-

bound control strategy for the most general two disturbance/one criterion as well as the one

disturl)ance/two criterion case. i:

The approach combines a weighted H2-criterion with a H,._.-bound criterion using a sin-

gle cost functional. The problem of 1nixed H2/H,_-control as posed 1)3' tile cost. function

Ja/"_(Co, K) furthermore represents a 'simui{a_neous mixed H2/H,__-bound-approach' Ex-

tensions to an actual mixed He/H×-design ai_c[ tz-synthesis can be included. The embedded

H2-problem can be optimized with white noise as driving disturbance or other noise dis{ri-

butions.

Tile assumed compensator structure is the most general (proper or strictly proper), the

controller order can be chosen fl'eely. The initial guess for the compensator need not be

stabilizing.

The presented a lgorithnn is well defined for every finite time l f, and represents a, compu-

tational way to solve the min-ma.x problem not in terms of a saddle point solution but in

terms of a "bounded game 'alue if it exists.

The formulation of the mixed H2/tt,_-control problem as a finite time rain-max problem

using parameter optimization methods represents a new, non Riccati-based approach in

mixed H_/Ho_-bound control.

9 Outline of Further Research

1. Implementation of the algorithm and creation of a test-bed for the defined cost function.

"2. Test on sample plants add comparison with Ricca.ti-based designs. The comparison will

be performed on an analytical basis by comparing the K that generates the worst-case



53

5.

4.

H_-disturbance with the solution of the according ARE. Further analysis will include

maxin-mm singular value plots and the achieved H2-norm.

Extension and application of the proposed scheme to the general "two disturbance

inputs/two disturbance output"-case. As long as cross-couplings.are neglected, this

generalization does not pose a significant problem with the defined cost function as we

can define two independent systems for the Ha- and H._-objective (both systems share

the same controller).

Simplification of the general system assumptions for a 'two disturbance inputs/two

criterion ouid)uts' and relaxation of the imposed constraints (such as orthogonality

conditions or observability/controllability conditions). This task will be performed in

the spirit of Safonov (see [44] or [66]) by using preliminary state, control and distur-

bance transforma tions.

Possible Extensions and Long Term Goals:

1. Inclusion of a 3-iteration for an actual minimization of the according H,_-norm.

2. Extension to tz-synthesis if the _X-block has a structure.

3. Actual definition of a strategy for the "two disturbance inputs/two disturbance

output"-case, taking cross-couplings into account.

4. Modification of the defined cost function to incorporate CLTR-type designs.

5. Possible use of genetic algorithms to solve the posed optimization problem.

6. Extension to a general mixed H.x,/H,__-synthesis framework.

Work in Progress:

E. Schoemig and lly-Loi Ly, "' Mixed H.a/H.×_ Control with an Output-Feedback Compen-

sator Using Parameter Optimization," To be presented at the 1992 ACC Conference, Westin

Hotel, Chicago, IL, .June 24-26, I992.
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